平面ベクトルと空間ベクトル - 質問解決D.B.(データベース)

平面ベクトルと空間ベクトル

問題文全文(内容文):
平面ベクトルと空間ベクトルの解説動画です
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
平面ベクトルと空間ベクトルの解説動画です
投稿日:2019.12.31

<関連動画>

【数B】空間ベクトル:ベクトルの大きさの最小値

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$ a=(3,4,4), b=(2,3,-1)$がある。実数 t を変化させるとき、$c=a+tb$の大きさの最小値と、その時の t の値を求めよ。
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(2)〜受験編

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(1,2,4)$を通り、ベクトル$\ \overrightarrow{ n }=(-3,1,2)$に垂直な平面を$\alpha$とする。
平面$\alpha$に関して同じ側に2点$\ P(-2,1,7),Q(1,3,7)$がある。
平面$\alpha$上の点で、$PS+QS$を最小にする点$S$の座標と最小値を求めよ。
この動画を見る 

【数C】ベクトル:直線と平面の交点

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
この動画を見る 

【数B】空間ベクトル:球面の方程式! 次の条件を満たす球面の方程式を求めよう。(1)直径の両端が2点(1,-4,3) (3,0,1)である。(2)点(1,-2,5)を通り、3つの座標平面に接する。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす球面の方程式を求めよう。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
この動画を見る 

【数B】空間ベクトル:球面の方程式!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)球面$x^2+y^2+z^2-4x-6y+2z+5=0$とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点$(-2,4,-2)$で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径$\sqrt3$の円になるとき、kの値を求めよう。
この動画を見る 
PAGE TOP