【受験対策】 数学-図形② - 質問解決D.B.(データベース)

【受験対策】  数学-図形②

問題文全文(内容文):
①右の[図1]のような図形を組み立てて、三角柱の形をした容器をつくりました。
この容器を立てて、中に48$cm^3$の水を入れたとき、水が容器にふれている部分の面積を 求めよう。
ただし、容器の厚みは考えないものとし、水がこぼれることもないものとします。

② 右の[図2]のように、円周上に点A、B、C、Dがあります。
ACとBDの交点をEとし、直線ABと直線CDの交点をF とします。
$\angle BAC=27°\angle AED=87°$のとき、 $\angle AFD$の大きさを求めよう。

③右の[図3]で、△ABCはAB=ACの二等辺三角形です。
辺BC上に点Dをとり、ADを折り目として折り返し、
頂点Bが移った位置をEとします。
辺BCとAEの交点をFと すると、FD=FEになりました。
$\angle BAD=42°$のとき、 $\angle ACB$の大きさを求めよう。
※図は動画内参照
単元: #数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の[図1]のような図形を組み立てて、三角柱の形をした容器をつくりました。
この容器を立てて、中に48$cm^3$の水を入れたとき、水が容器にふれている部分の面積を 求めよう。
ただし、容器の厚みは考えないものとし、水がこぼれることもないものとします。

② 右の[図2]のように、円周上に点A、B、C、Dがあります。
ACとBDの交点をEとし、直線ABと直線CDの交点をF とします。
$\angle BAC=27°\angle AED=87°$のとき、 $\angle AFD$の大きさを求めよう。

③右の[図3]で、△ABCはAB=ACの二等辺三角形です。
辺BC上に点Dをとり、ADを折り目として折り返し、
頂点Bが移った位置をEとします。
辺BCとAEの交点をFと すると、FD=FEになりました。
$\angle BAD=42°$のとき、 $\angle ACB$の大きさを求めよう。
※図は動画内参照
投稿日:2014.01.08

<関連動画>

【高校受験対策/数学】図形38

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形38

Q
図1のように、円すい状のライトが床からの高さ300cmの天井からひもでつり下げられている。
図1の点線は円すいの母線を延長した直線を示しており、ライトから出た光はこの点線の内側を進んで床を円形に照りしているものとする。
図2、図3は天井からつり下げたライトを示したもので、図2のライトAは底面の直径が8cm、高さが10cm、図3のライトBは底面の直径が6cm、高さが10cmの円すいの側面を用いた形状となっている。


ライトAをつり下げるひもの長さが100cmのとき、このライトが床を照らしてできる円の直径を求めなさい。


ライトをつり下げるひもの長さが$x$cmのときにこのライトが床を照らしてできる円の直径を$y$ cmとする。
$x$の変域を$50 \leqq x \leqq 180$とするとき、$y$を$x$の式で表しなさい。
また、$y$の変域を求めなさい。


ライトAとライトBをそれぞれ天井からひもでつり下げて、ひもの長さを変えながら2つのライトが照らしてできる円の面積を調べた。
ライトをつり下げるひもの長さを$x$ cm、ライトBをつり下げるひもの長さを$\frac{x}{2}$ cmとしたとき
2つのライトを照らしてできる円の面積が等しくなるような$x$の値を求めなさい。
この動画を見る 

高校入試だけど中学生より高校生向けの問題 早大学院(改)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#方程式#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
xについての方程式(a,b,cは整数)
$ax^2+bx+c = 0$について
$b^2-4ac > 0$ならば必ず2つの解をもつ。
○か✖か?

早稲田大学 高等学院(改)
この動画を見る 

【中1 数学】  1-③① 方程式の利用③ (みはじ編)

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中1 数学 方程式の利用③ (みはじ編)
以下の問に答えよ
① 心優が 2km 離れたコンビニへ。10分後、キャンディは(心)がさいふを忘れているのに気付き追いかけました。
(心):分速80m、(キ):分速240m
(キ)が出発してから何分後に追いつく?
② ジョーカーの家から学校まで1000m。ある日、17分前に家を出て、途中のA地点までは分速60m、A地点からは分速80mで行ったら 2分前に着いた。
家からAは何m?
※図は動画内参照
この動画を見る 

中1数学「点の座標」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
点の座標に関して解説していきます。
この動画を見る 

感覚に反する不思議な100円

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#平面図形#図形の移動#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2枚の100円回転させると2周する理由解説動画です
この動画を見る 
PAGE TOP