#自治医科大(2015) #定積分 #Shorts - 質問解決D.B.(データベース)

#自治医科大(2015) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \frac{35}{2}\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7x$ $dx$

出典:2015年自治医科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{35}{2}\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7x$ $dx$

出典:2015年自治医科大学
投稿日:2024.07.11

<関連動画>

大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ますただ
問題文全文(内容文):
三角形$OAB$が
$|\overrightarrow{ OA }|=3,$ $|\overrightarrow{ AB }|=5,$ $\overrightarrow{ OA }.\overrightarrow{ AB }=10$
を満たしているとする。
三角形$OAB$の内接円の中心を$I$とし、この内接円と辺$OA$の接点を$H$とする。

1.辺$OB$の長さを求めよ。
2.$\overrightarrow{ OI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
3.$\overrightarrow{ HI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。

出典:2024年北海道大学
この動画を見る 

大学入試問題#241 早稲田大学(2014) #指数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=(27^x+\displaystyle \frac{1}{27^x})-5(9^x+\displaystyle \frac{1}{9^x})$
$-5(3^x+\displaystyle \frac{1}{3^x})+1$の最小値と、そのときの$x$の値を求めよ。

出典:2014年早稲田大学 入試問題
この動画を見る 

弘前大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
和が$406$で最小公倍数が$2660$である2つの自然数を求めよ

出典:2010年弘前大学 過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第4問〜ベクトル方程式と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ Oを原点とする座標空間に2点A(0,0,1), B(0,0,-1)がある。r>0, -π≦θ<πに対して、2点P(r$\cos\theta$,r$\sin\theta$,0),Q($\frac{1}{r}\cos\theta$,$\frac{1}{r}\sin\theta$,0)をとり、2直線APとBQの交点をR(a,b,c)とするとき、次の問いに答えよ。
(1)a,b,cの間に成り立つ関係式を求めよ。
(2)点G(4,1,1)をとる。r,θがr$\cos\theta$=$\frac{1}{2}$を満たしながら変化するとき、内積$\overrightarrow{OG}・\overrightarrow{OR}$の最大値とそのときのa,b,cの値を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第3問(3)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
中身の見えない2つの箱A、Bがある。箱Aには白玉と赤玉がそれぞれ2個ずつ入っており、箱Bには白玉1個だけが入っている。このとき、nを正の整数として、次の操作(*)を考える。
(*)はじめに、箱Aの中身をよくかきまぜて、箱Aから玉を2個取り出し、色を確認しないで、箱Bに2個とも入れる。次に、「箱Bの中身をよくかきまぜて、箱Bから玉を1個取り出し、色を確認した後、箱Bに戻す」という作業をn回繰り返す。
操作(*)を一度行なったとき、箱Bから取り出した玉がn回ともすべて白玉である確率を$p_n$とし、箱Bから取り出した玉がn回ともすべて白玉であるという条件のもとで、はじめに箱Aから取り出した玉が2個とも白玉である条件付き確率を$q_n$とする。次の問いに答えよ。
(1)$p_2、q_2$を求めよ。
(2)$p_n、q_n$を求めよ。
(3)$q_n\gt \dfrac{1}{2}$をみたす最小のnの値を求めよ。
この動画を見る 
PAGE TOP