【高校受験対策】数学-図形26 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形26

問題文全文(内容文):
高校受験対策・図形26
Q.
右の図は1辺の長さが8cmの正四面体$OABC$を表している。

①辺$OA,OB,OC$上にそれぞれ点$D,E,F$を、$OD:DA=1:2$、$OE:EB=1:2$、$OF:FC=1:2$
となるようにとる。
このとき正四面体$OABC$を3点$D,E,F$を通る平面で分けたときにできる2つの立体のうち
頂点$A$をふくむ立体の体積は正四面体$OABC$の体積の何倍か求めよ。

②$BC$の中点を$G$とし、辺$OA$上に、点$H$を$OH=GH$となるようにとる。
点$A$と点$G$を結び、点$H$から線分$AG$に垂線をひき、線分$AG$との 交点を$I$とする。
このとき線分$HI$の長さを求めよ。
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形26
Q.
右の図は1辺の長さが8cmの正四面体$OABC$を表している。

①辺$OA,OB,OC$上にそれぞれ点$D,E,F$を、$OD:DA=1:2$、$OE:EB=1:2$、$OF:FC=1:2$
となるようにとる。
このとき正四面体$OABC$を3点$D,E,F$を通る平面で分けたときにできる2つの立体のうち
頂点$A$をふくむ立体の体積は正四面体$OABC$の体積の何倍か求めよ。

②$BC$の中点を$G$とし、辺$OA$上に、点$H$を$OH=GH$となるようにとる。
点$A$と点$G$を結び、点$H$から線分$AG$に垂線をひき、線分$AG$との 交点を$I$とする。
このとき線分$HI$の長さを求めよ。
投稿日:2019.09.05

<関連動画>

球の表面積を一瞬で理解

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
球の表面積が$4 \pi r^2$が納得できないです
この動画を見る 

【裏技】知らないと損

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
円柱の中心角の求め方 裏技紹介動画です
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

テクニカルに解け 比例式 立命館高校

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a+b}{2} = \frac{b+c}{3} = \frac{c+a}{4} $
$\frac{b}{a} + \frac{c}{b} + \frac{a}{c} = ?$

立命館高等学校
この動画を見る 

筑駒中 図形問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 鈴木貫太郎
問題文全文(内容文):
正三角形$ABC$は$100cm^2$である.
$\triangle BCP$の面積を求めよ.

2016筑駒中過去問
この動画を見る 
PAGE TOP