【高校受験対策】数学-死守37 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守37

問題文全文(内容文):
高校受験対策・死守37

①$11+2 \times(-7)$を計算せよ。

➁$2(3a+4b)-(2a-b)$を計算せよ。

③$\frac{12}{\sqrt{6}}-\sqrt{96}$を計算せよ。

④一次方程式$2x+8=5x-13$を解け。

⑤二次方程式$x(x+6)=3x+10$を解け。

⑥1から6までの目が出る2つのさいころA、Bを同時に投げるとき、出る目の数の積が9の倍数になる確率を求めよ。
ただし、さいころはどの目が出ることも同様に確からしい とする。

⑦右の三角柱ABCDEFにおいて、辺DEとねじれの位置にある辺をすべて答えよ。

⑧全校生徒560人の中から無作為に抽出した40人に対してアンケートを行ったところ、
地域でボランティア活動に参加したことがある生徒は25人であった。
全校生徒のうち、地域でボランティア活動に参加したことがある生徒の人数はおよそ何人と推定できるか答えよ。

⑨次のア~エの数量の関係のうち、$y$が$x$の2乗に比例するものを1つ選び、記号で答えよ。
またその関係について、$y$を$x$の式で表せ。

ア 半径が$x$cmの円の周の長さを$y$cmとする。
イ 周の長さが8cmの長方形の縦の長さを$x$cm、横の長さを$y$cmとする。
ウ 面積が12㎠の三角形の辺のさを$x$cm、高さを$y$cmとする。
エ 底面の1辺の長さが$x$cm、高さが6cmの正四角すいの体積を$y cm^3$とする
単元: #数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守37

①$11+2 \times(-7)$を計算せよ。

➁$2(3a+4b)-(2a-b)$を計算せよ。

③$\frac{12}{\sqrt{6}}-\sqrt{96}$を計算せよ。

④一次方程式$2x+8=5x-13$を解け。

⑤二次方程式$x(x+6)=3x+10$を解け。

⑥1から6までの目が出る2つのさいころA、Bを同時に投げるとき、出る目の数の積が9の倍数になる確率を求めよ。
ただし、さいころはどの目が出ることも同様に確からしい とする。

⑦右の三角柱ABCDEFにおいて、辺DEとねじれの位置にある辺をすべて答えよ。

⑧全校生徒560人の中から無作為に抽出した40人に対してアンケートを行ったところ、
地域でボランティア活動に参加したことがある生徒は25人であった。
全校生徒のうち、地域でボランティア活動に参加したことがある生徒の人数はおよそ何人と推定できるか答えよ。

⑨次のア~エの数量の関係のうち、$y$が$x$の2乗に比例するものを1つ選び、記号で答えよ。
またその関係について、$y$を$x$の式で表せ。

ア 半径が$x$cmの円の周の長さを$y$cmとする。
イ 周の長さが8cmの長方形の縦の長さを$x$cm、横の長さを$y$cmとする。
ウ 面積が12㎠の三角形の辺のさを$x$cm、高さを$y$cmとする。
エ 底面の1辺の長さが$x$cm、高さが6cmの正四角すいの体積を$y cm^3$とする
投稿日:2019.09.04

<関連動画>

福田の数学〜千葉大学2023年第8問〜iのn乗根Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{8}$ 実数$a$,$b$と虚数単位$i$を用いて複素数$z$が$z$=$a$+$bi$の形で表されるとき、$a$を$z$の実部、$b$を$z$の虚部と呼び、それぞれ$a$=$Re(z)$,$b$=$Im(z)$と表す。
(1)$z^3$=$i$を満たす複素数$z$をすべて求めよ。
(2)$z^{100}$=$i$を満たす複素数$z$のうち、$Re(z)$≦$\frac{1}{2}$かつ$Im(z)$≧0を満たすものの個数を求めよ。
(3)$n$を正の整数とする。$z^n$=$i$を満たす複素数$z$のうち、$Re(z)$≧$\frac{1}{2}$を満たすものの個数を$N$とする。$N$>$\frac{n}{3}$となるための$n$に関する必要十分条件を求めよ。
この動画を見る 

対数の良問!値を上手く自分で評価できるかがポイント【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数m,nと$0<a\dfrac{2}{3}$が成り立つことを示せ。

大阪大過去問
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

2023年京大数学!整式の割り算!2通りで解説します【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
整式$x^{2023}-1$を整式$x^{4}+x^{3}+x^{2}+x+1$で割ったときの余りを求めよ。

京都大過去問
この動画を見る 

【数Ⅱ】複素数の計算【簡単なようで間違えやすい計算】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ iと等しいものを2つ選べ.
\dfrac{1}{i^3},\sqrt{-\dfrac{1}{2}}\sqrt{-2}i,\dfrac{1}{\sqrt{-1}},\dfrac{-3+2i}{2+3i}$
この動画を見る 
PAGE TOP