大学入試問題#790「解き方はたくさんありそう」 #福島大学(2021) #極限 - 質問解決D.B.(データベース)

大学入試問題#790「解き方はたくさんありそう」 #福島大学(2021) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to a } \displaystyle \frac{\sin\ x-\sin\ a}{\sin(x-a)}$

出典:2021年福島大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to a } \displaystyle \frac{\sin\ x-\sin\ a}{\sin(x-a)}$

出典:2021年福島大学 入試問題
投稿日:2024.04.10

<関連動画>

福田の数学〜東京大学2018年理系第1問〜関数の増減と極限の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{x}{\sin x}+\cos x (0 \lt x \lt \pi)$のぞうげんひょうを作り、$x→+0,x→\pi-0$のときの極限を調べよ。

2018東京大学理過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
中央大学2022年理工学部第4問解説です

tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
この動画を見る 

【理数個別の過去問解説】2020年度横浜国立大学 数学 第4問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問4(2)
xyz空間に、2点A(1,2,9)、B(-3,6,7)を通る直線lがある。また、l上の点P、Qと、x軸上の点R、Sは
直線$PR⊥xy$平面、直線$QS⊥x$軸、直線$QS⊥l$
を満たす。次の問いに答えよ。
(1)P、Rの座標を求めよ。
(2)Q、Sの座標を求めよ。
(3)線分PQをx軸のまわりに1回転してできる局面と、Pを含みx軸に垂直な平面と、Qを含みx軸に垂直な平面で囲まれた立体の体積を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第4問〜絶対値の付いた2次関数とx分のyの最大値

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $a$を1以上の定数とする。点P($x$,$y$)は曲線$y$=$|x^2-5x+4|$上を動く点で、$x$座標は1≦$x$≦$a$を満たすものとする。このとき$\displaystyle\frac{y}{x}$の最大値が、定数$a$の値によらないような$a$の値の範囲は、
$\boxed{\ \ シ\ \ }$≦$a$≦$\boxed{\ \ ス\ \ }$+$\sqrt{\boxed{\ \ セ\ \ }}$
である。この範囲の$a$の値における$\displaystyle\frac{y}{x}$の最大値は$\boxed{\ \ ソ\ \ }$である。
この動画を見る 

二項定理を使ってあることに気付ける?【2017年一橋大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。

2017一橋大過去問
この動画を見る 
PAGE TOP