問題文全文(内容文):
$C=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x+3}{2\sin\ x+3\cos\ x+13} dx$
$D=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin\ x+2}{2\sin\ x+3\cos\ x+13} dx$
$C,D$の値を求めよ。
出典:2024年順天堂大学医学部 入試問題
$C=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x+3}{2\sin\ x+3\cos\ x+13} dx$
$D=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin\ x+2}{2\sin\ x+3\cos\ x+13} dx$
$C,D$の値を求めよ。
出典:2024年順天堂大学医学部 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師:
ますただ
問題文全文(内容文):
$C=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x+3}{2\sin\ x+3\cos\ x+13} dx$
$D=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin\ x+2}{2\sin\ x+3\cos\ x+13} dx$
$C,D$の値を求めよ。
出典:2024年順天堂大学医学部 入試問題
$C=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x+3}{2\sin\ x+3\cos\ x+13} dx$
$D=\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin\ x+2}{2\sin\ x+3\cos\ x+13} dx$
$C,D$の値を求めよ。
出典:2024年順天堂大学医学部 入試問題
投稿日:2024.02.15