福田の数学〜慶應義塾大学2024年医学部第2問〜確率漸化式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年医学部第2問〜確率漸化式

問題文全文(内容文):
$\Large\boxed{2}$ 袋が2つ(袋1と袋2)および赤玉2個、白玉4個が用意されている。それぞれの袋に玉が3個ずつ入った状態として、次の3つがあり得る。
状態A:袋1に入っている赤玉が0個である状態
状態B:袋1に入っている赤玉が1個である状態
状態C:袋1に入っている赤玉が2個である状態
上記の各状態に対して、次の2段階からなる操作Tを考える。
操作T:袋1から玉を1個無作為に取り出し、それを袋2に入れる。次に、袋2から玉を1個無作為に取り出し、それを袋1に入れる。
(1)X,YをそれぞれA,B,Cのいずれかとする。状態Xに対し操作Tを1回施した結果、状態Yになる確率をP(X→Y)で表す。このとき、
P(A→A)=$\boxed{\ \ (あ)\ \ }$, P(A→B)=$\boxed{\ \ (い)\ \ }$, P(B→A)=$\boxed{\ \ (う)\ \ }$,
P(B→B)=$\boxed{\ \ (え)\ \ }$, P(C→A)=$\boxed{\ \ (お)\ \ }$, P(C→B)=$\boxed{\ \ (か)\ \ }$ である。
(2)以下、$n$を自然数とし、状態Bから始めて操作Tを繰り返し施す。操作Tを$n$回施し終えたとき、状態Aである確率を$a_n$、状態Bである確率を$b_n$、状態Cである確率を$c_n$とする。$n$≧2 とするとき、$a_n$,$b_n$,$c_n$と$a_{n-1}$,$b_{n-1}$,$c_{n-1}$の間には次の関係式が成り立つ。
$\left\{\begin{array}{1}
a_n=\boxed{\ \ (あ)\ \ }a_{n-1}+\boxed{\ \ (う)\ \ }b_{n-1}+\boxed{\ \ (お)\ \ }c_{n-1}\\
b_n=\boxed{\ \ (い)\ \ }a_{n-1}+\boxed{\ \ (え)\ \ }b_{n-1}+\boxed{\ \ (か)\ \ }c_{n-1}\\
\end{array}\right.$
したがって$b_n$と$b_{n-1}$の間には次の関係式が成り立つことが分かる。
$b_n$=$\boxed{\ \ (き)\ \ }b_{n-1}$+$\boxed{\ \ (く)\ \ }$
これより、$n$≧1 に対して$b_n$を$n$の式で表すと
$b_n$=$\boxed{\ \ (け)\ \ }$+$\boxed{\ \ (こ)\ \ }(\boxed{\ \ (さ)\ \ })^n$
となる。さらに$d_n$=$\displaystyle\frac{a_n}{(\boxed{\ \ (あ)\ \ })^n}$とおくとき、$d_n$を$n$の式で表すと
$d_n$=$\boxed{\ \ (し)\ \ }\left\{(\boxed{\ \ (す)\ \ })^n-(\boxed{\ \ (せ)\ \ })^n\right\}$
となる。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 袋が2つ(袋1と袋2)および赤玉2個、白玉4個が用意されている。それぞれの袋に玉が3個ずつ入った状態として、次の3つがあり得る。
状態A:袋1に入っている赤玉が0個である状態
状態B:袋1に入っている赤玉が1個である状態
状態C:袋1に入っている赤玉が2個である状態
上記の各状態に対して、次の2段階からなる操作Tを考える。
操作T:袋1から玉を1個無作為に取り出し、それを袋2に入れる。次に、袋2から玉を1個無作為に取り出し、それを袋1に入れる。
(1)X,YをそれぞれA,B,Cのいずれかとする。状態Xに対し操作Tを1回施した結果、状態Yになる確率をP(X→Y)で表す。このとき、
P(A→A)=$\boxed{\ \ (あ)\ \ }$, P(A→B)=$\boxed{\ \ (い)\ \ }$, P(B→A)=$\boxed{\ \ (う)\ \ }$,
P(B→B)=$\boxed{\ \ (え)\ \ }$, P(C→A)=$\boxed{\ \ (お)\ \ }$, P(C→B)=$\boxed{\ \ (か)\ \ }$ である。
(2)以下、$n$を自然数とし、状態Bから始めて操作Tを繰り返し施す。操作Tを$n$回施し終えたとき、状態Aである確率を$a_n$、状態Bである確率を$b_n$、状態Cである確率を$c_n$とする。$n$≧2 とするとき、$a_n$,$b_n$,$c_n$と$a_{n-1}$,$b_{n-1}$,$c_{n-1}$の間には次の関係式が成り立つ。
$\left\{\begin{array}{1}
a_n=\boxed{\ \ (あ)\ \ }a_{n-1}+\boxed{\ \ (う)\ \ }b_{n-1}+\boxed{\ \ (お)\ \ }c_{n-1}\\
b_n=\boxed{\ \ (い)\ \ }a_{n-1}+\boxed{\ \ (え)\ \ }b_{n-1}+\boxed{\ \ (か)\ \ }c_{n-1}\\
\end{array}\right.$
したがって$b_n$と$b_{n-1}$の間には次の関係式が成り立つことが分かる。
$b_n$=$\boxed{\ \ (き)\ \ }b_{n-1}$+$\boxed{\ \ (く)\ \ }$
これより、$n$≧1 に対して$b_n$を$n$の式で表すと
$b_n$=$\boxed{\ \ (け)\ \ }$+$\boxed{\ \ (こ)\ \ }(\boxed{\ \ (さ)\ \ })^n$
となる。さらに$d_n$=$\displaystyle\frac{a_n}{(\boxed{\ \ (あ)\ \ })^n}$とおくとき、$d_n$を$n$の式で表すと
$d_n$=$\boxed{\ \ (し)\ \ }\left\{(\boxed{\ \ (す)\ \ })^n-(\boxed{\ \ (せ)\ \ })^n\right\}$
となる。
投稿日:2024.06.24

<関連動画>

京都大(文)4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4-x^3+x^2-(a+2)x-a-3=0$が虚軸上の解をもつ実数$a$を求めよ

出典:2001年京都大学 大学院文学研究科 過去問
この動画を見る 

【高校数学】京都大学の定積分の問題はとにかく基本に忠実に!

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【京都大学 2025】
次の定積分の値を求めよ。
$\displaystyle \int _0^\sqrt{3}\frac{x\sqrt{x^2+1}+2x^3+1}{x^2+1}dx$
この動画を見る 

100個の絶対値の合計!?どう解く? #Shorts #ずんだもん #勉強

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nが整数であるとき、S=|n-1|+|n-2|+・・・+|n-100|の最小値を求めよ。
この動画を見る 

大学入試問題#846「基本問題」 #岩手大学(2017) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ

出典:2017年岩手大学 入試問題
この動画を見る 

#東海大学医学部(2019) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\tan\ x-\sin\ x}{x^3}$

出典:2019年東海大学医学部
この動画を見る 
PAGE TOP