大学入試問題#683「早稲田大学人間科学部(2014)と同型」 昭和大学医学部(2023) - 質問解決D.B.(データベース)

大学入試問題#683「早稲田大学人間科学部(2014)と同型」 昭和大学医学部(2023)

問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8$
$a^2+b^2+c^2=32$
を満たすとき、$c$の値が取りうる範囲を求めよ。

出典:2023年昭和大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8$
$a^2+b^2+c^2=32$
を満たすとき、$c$の値が取りうる範囲を求めよ。

出典:2023年昭和大学医学部 入試問題
投稿日:2023.12.23

<関連動画>

三項間漸化式 兵庫県立大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.

兵庫県立大過去問
この動画を見る 

高知大(医他) 二次方程式整数解 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
a自然数、p、q素数
$ax^2-px+q=0$の2解が整数となる(a,p,q)の組をすべて求めよ
この動画を見る 

福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
この動画を見る 

大学入試問題#24 秋田大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。

出典:2020年秋田大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(3)〜最小公倍数の変化と個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (3)1から$n$までの$n$個の自然数の最小公倍数を$a_n$とする。
・$a_n$=$a_{n+1}$を満たす最小の自然数$n$は$\boxed{ケ}$である。
・$a_{n+1}$=$2a_n$を満たす10000以下の自然数$n$は$\boxed{コサ}$個ある。
この動画を見る 
PAGE TOP