大学入試問題#646「似てるけど」 京都工芸繊維大学(2011) 定積分 - 質問解決D.B.(データベース)

大学入試問題#646「似てるけど」 京都工芸繊維大学(2011) 定積分

問題文全文(内容文):
$0 \lt A \lt \displaystyle \frac{\pi}{2}$
(1)
$\displaystyle \int_{A}^{\frac{\pi}{2}} (\cos\ x)log(\sin\ x) dx$

(2)
$\displaystyle \int_{0}^{A} (\cos\ x)log(\cos\ x) dx$

出典:2011年京都工芸繊維大学後期 入試問題
チャプター:

00:00 問題紹介
08:00 作成した解答1
08:12 作成した解答2
08:22 作成した解答3

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt A \lt \displaystyle \frac{\pi}{2}$
(1)
$\displaystyle \int_{A}^{\frac{\pi}{2}} (\cos\ x)log(\sin\ x) dx$

(2)
$\displaystyle \int_{0}^{A} (\cos\ x)log(\cos\ x) dx$

出典:2011年京都工芸繊維大学後期 入試問題
投稿日:2023.11.12

<関連動画>

大学入試問題#153 東京医科大学(2017) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
この動画を見る 

2022北海道大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-$
$k+1 $
(1)$ f(k-1)$の値を求めよ.
(2)$ \vert k \vert \lt 2$のとき,不等式 $ f(n)\geqq 0$を解け.

2022北海道大過去問
この動画を見る 

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(2)〜多項定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$(1+x+x^2)^{10}\ のx^{16}$の係数は$\boxed{ア}$である。

2022上智大学理工部過去問
この動画を見る 

大学入試問題#907「チャートに掲載されてる?」 #信州大学理学部(2024) #極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to a } \displaystyle \frac{x^3-x^2+(2a-3)x+b}{x^2-(a-1)x-a}=3$
が成り立つように定数$a$と$b$の値を求めよ。

出典:2024年信州大学理学部
この動画を見る 
PAGE TOP