大学入試問題#673「何度も解いてるはず」 東京慈恵会医科大学(2001) - 質問解決D.B.(データベース)

大学入試問題#673「何度も解いてるはず」 東京慈恵会医科大学(2001)

問題文全文(内容文):
$\displaystyle \int_{0}^{1} log(x^2+3) dx$

出典:2001年東京慈恵会医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} log(x^2+3) dx$

出典:2001年東京慈恵会医科大学 入試問題
投稿日:2023.12.10

<関連動画>

大学入試問題#811「方向性が見えれば、気合いで解ける」 #京都大学(1972) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
実数または複素数の$x,y,z,a$について、
$x+y+z=a$
$x^3+y^3+z^3=a^3$
の2式が成立するとき、$x,y,z$のうちの少なくとも1つは$a$に等しいことを示せ。

出典:1972年京都大学
この動画を見る 

福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$nを0以上の整数とする。定積分
$I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx$
について、次の問(1)~(4)に答えよ。ただし、$e$は自然対数の底である。
(1)$I_0, I_1$の値をそれぞれ求めよ。
(2)$I_{n+1}$を$I_n$と$n$を用いて表せ。
(3)$x \gt 0$とする。関数$f(x)=\frac{(\log x)^2}{x}$の増減表を書け。
ただし、極値も増減表に記入すること。
(4)座標平面上の曲線$y=\frac{(\log x)^2}{x}$, x軸と直線$x=e$とで囲まれた図形を、
x軸の周りに1回転させてできる立体の体積Vを求めよ。

2021立教大学理工学部過去問
この動画を見る 

大学入試問題#798「微分方程式の基礎トレーニング」 横浜国立大学(2024) #微分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
実数全体で定義された連続関数$f(x)$が、すべての実数$x$に対して$f(x) \gt 0,$かつ
$f(x)=\displaystyle \int_{0}^{ x } \displaystyle \frac{t}{(t^2+1)f(t)} dt+1$を満たすとき、$f(x)$を求めよ。

出典:2024年横浜国立大学
この動画を見る 

大学入試問題#495「知ってる形に」  産業医科大学(2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{0} \displaystyle \frac{x^2+x-1}{x^2+x+1} dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

#関西学院大学2006#不定積分_68

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \dfrac{\sin x \cos x}{2+\cos \ x} dx$を解け.

2006関西学院大学過去問
この動画を見る 
PAGE TOP