【中学数学】数学検定3級:問題6(27)~(30) - 質問解決D.B.(データベース)

【中学数学】数学検定3級:問題6(27)~(30)

問題文全文(内容文):
問題6.次の問いに答えなさい。
(23) yはxに反比例し、$x=-3$のとき$y=-12$です。yをxを用いて表しなさい。
(24) 右の度数分布表において、階級の幅は何㎝ですか。
(25) 等式$a=\dfrac{1}{2}(b+c)$ をbについて解きなさい。
(26) 右の図で、$\ell\parallel m$のとき、$∠x$の大きさは何度ですか。
チャプター:

0:00 問題説明
0:13 (23)の解説
1:14 (24)の解説
1:49 (25)の解説
2:34 (26)の解説
3:33 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題6.次の問いに答えなさい。
(23) yはxに反比例し、$x=-3$のとき$y=-12$です。yをxを用いて表しなさい。
(24) 右の度数分布表において、階級の幅は何㎝ですか。
(25) 等式$a=\dfrac{1}{2}(b+c)$ をbについて解きなさい。
(26) 右の図で、$\ell\parallel m$のとき、$∠x$の大きさは何度ですか。
投稿日:2022.08.12

<関連動画>

20年5月数学検定1級1次試験(微分)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$x=\sin\theta$
$y=-1\log\tan\dfrac{\theta}{2}-\cos\theta$
$\theta=\dfrac{\pi}{3}$における$\dfrac{d^2y}{dx^2}$を求めよ.

20年5月数学検定1級1次試験(微分)過去問
この動画を見る 

【数検2級】数学検定2級2次:問題7

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#接線と増減表・最大値・最小値#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$y=x^3-2x$ で表されるxy平面上の曲線をCとします。このとき、次の問いに答えなさい。
(1) C上の点($t,t^3-2t$)における接線の方程式をtを用いて表しなさい。
(2) 点(0,-2)からCへ引いた接線の方程式を求めなさい。
この動画を見る 

三乗根の外し方 数検1級向け計算練習

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 3 ]{ \sqrt{ 5 }+2 }$の値を求めよ
この動画を見る 

【数検2級】高校数学:数学検定2級2次:問題2

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題2.(選択)
 nを0以上の整数とします。点P,Qは正四面体ABCDの頂点の上を,次の条件①,②に従って移動するものとします。
 ① 最初,点Pは頂点A,点Qは頂点Bにいる。
 ② 点Pと点Qは独立して1秒ごとに現在位置から他の3つの頂点のいずれかにそれぞれ1/3の確率で移動する。
 移動を始めてからn秒後に点Pと点Qが同じ頂点にいる確率をPnとするとき,P₁,P₂,P₃をそれぞれ求めなさい。
この動画を見る 

#数検準1級1次過去問#定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e^2-1} log(x+1)$ $dx$

出典:数検準1級1次
この動画を見る 
PAGE TOP