【高校数学】 数Ⅰ-83 三角比⑧ - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-83  三角比⑧

問題文全文(内容文):
◎$0° \leqq \theta \leqq 180°,\sin \theta+\cos \theta=\displaystyle \frac{1}{2}$のとき、次の式の値を求めよう。

①$\sin \theta\cos \theta$
②$\sin^3 \theta+\cos^3 \theta$
③$\sin \theta-\cos \theta$
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0° \leqq \theta \leqq 180°,\sin \theta+\cos \theta=\displaystyle \frac{1}{2}$のとき、次の式の値を求めよう。

①$\sin \theta\cos \theta$
②$\sin^3 \theta+\cos^3 \theta$
③$\sin \theta-\cos \theta$
投稿日:2014.10.23

<関連動画>

これ解ける?

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これ解ける?
※問題文は動画内参照
この動画を見る 

平方根の計算

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
√6 ×√24
この動画を見る 

福田の数学〜千葉大学2022年理系第9問〜関数が常に増加する条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とし、関数
$f(x)=x+\frac{r}{\sqrt{1+\sin^2x}}$
を考える。
(1)$r=1$のとき、f$(x)$は常に増加することを示せ。
(2)次の条件を満たす最大の正の実数cを求めよ。

条件:$0 \lt r \lt c$のときは$f(x)$が常に増加する。

2022千葉大学理系過去問
この動画を見る 

簡単な計算問題

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\sqrt{\dfrac{2021^3-2019^3-2}{6}}$
この動画を見る 

【高校数学】  数Ⅰ-51  2次関数の決定③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす放物線の方程式を求めよう。

①放物線$y=2x^2-3x$を平行移動した曲線で、2点(1.-1)(2.0)を通る。
②放物線$y=x^2-3x+4$を平行移動した曲線で、点(2.4)を通り、頂点が 直線$y=2x+1$上にある。
この動画を見る 
PAGE TOP