問題文全文(内容文):
計算してみよう。
①$(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2$
②$\displaystyle \frac{1}{1+\tan^2 \theta}-(1-\sin \theta)(1+\sin \theta)$
計算してみよう。
①$(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2$
②$\displaystyle \frac{1}{1+\tan^2 \theta}-(1-\sin \theta)(1+\sin \theta)$
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算してみよう。
①$(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2$
②$\displaystyle \frac{1}{1+\tan^2 \theta}-(1-\sin \theta)(1+\sin \theta)$
計算してみよう。
①$(\sin \theta+\cos \theta)^2+(\sin \theta-\cos \theta)^2$
②$\displaystyle \frac{1}{1+\tan^2 \theta}-(1-\sin \theta)(1+\sin \theta)$
投稿日:2014.10.12