数学「大学入試良問集」【14−10空間ベクトルと正四面体】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−10空間ベクトルと正四面体】を宇宙一わかりやすく

問題文全文(内容文):
各辺の長さが1の正四面体$OABC$に対し、$OB$を$2:1$に内分する点を$D,OC$を2等分する点を$E,BC$を2等分にする点を$F$とする。
$DE$と$OF$の交点を$G$とするとき、以下の各問いに答えよ。
(1)$OG$の長さを求めよ。
(2)$AG$の長さを求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
各辺の長さが1の正四面体$OABC$に対し、$OB$を$2:1$に内分する点を$D,OC$を2等分する点を$E,BC$を2等分にする点を$F$とする。
$DE$と$OF$の交点を$G$とするとき、以下の各問いに答えよ。
(1)$OG$の長さを求めよ。
(2)$AG$の長さを求めよ。
投稿日:2021.10.21

<関連動画>

福田の1.5倍速演習〜合格する重要問題086〜慶應義塾大学2020年度医学部第1問(1)〜平面と平面のなす角

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。

2020慶應義塾大学医学部過去問
この動画を見る 

数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体$OABC$の辺$AB$を$4:5$に内分する点を$D$、辺$OC$を$2:1$に内分する点を$E$とし、線分$DE$の中点を$P$、直線$OP$が平面$ABC$と交わる点を$Q$とする。
次の各問いに答えよ。
(1)
$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とおくとき、$\overrightarrow{ OP }$を$\vec{ a },\ \vec{ b },\ \vec{ c }$で表せ。
また、$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の大きさの比$|\overrightarrow{ OP }|:|\overrightarrow{ OQ }|$を最も簡単な整数比で表せ。

(2)
$\triangle ABQ$と$\triangle ABC$の面積比$\triangle ABQ:\triangle ABC$を最も簡単な整数比で表せ。
この動画を見る 

【数B】空間ベクトル:原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点Oと3点A(2,2,4) B(-1,1,2) C(4,1,1)から等距離にある点Mの座標を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$aを1以上の実数とし、$AB=BC=CA=1$および$AD=BD=CD=a$
を満たす四面体ABCDを考える。このとき、$\cos\angle BAD=\boxed{\ \ ア\ \ }$である。
また、ADの中点をEとしたとき、$\overrightarrow{ EB }$を$\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }$を用いて表すと
$\overrightarrow{ EB }=\boxed{\ \ イ\ \ }$となるので、$|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }$で、
$\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }$
である。よって、$a=1$のとき、$\cos\angle BEC=\boxed{\ \ オ\ \ }$であり、
$\angle BEC=60°$となるのは$a=\boxed{\ \ カ\ \ }$のときである。

2022慶応義塾大学看護医療学科過去問
この動画を見る 

【数C】【空間ベクトル】4点A(1,0,0)、B(0,1,0)、C(0,0,2)、D(1,2,3)がある。△ABCの面積Sと、四面体ABCDの体積Vを求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点A(1,0,0)、B(0,1,0)、C(0,0,2)、D(1,2,3)がある。△ABCの面積Sと、四面体ABCDの体積Vを求めよ。
この動画を見る 
PAGE TOP