数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく

問題文全文(内容文):
四面体$OABC$の辺$AB$を$4:5$に内分する点を$D$、辺$OC$を$2:1$に内分する点を$E$とし、線分$DE$の中点を$P$、直線$OP$が平面$ABC$と交わる点を$Q$とする。
次の各問いに答えよ。
(1)
$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とおくとき、$\overrightarrow{ OP }$を$\vec{ a },\ \vec{ b },\ \vec{ c }$で表せ。
また、$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の大きさの比$|\overrightarrow{ OP }|:|\overrightarrow{ OQ }|$を最も簡単な整数比で表せ。

(2)
$\triangle ABQ$と$\triangle ABC$の面積比$\triangle ABQ:\triangle ABC$を最も簡単な整数比で表せ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体$OABC$の辺$AB$を$4:5$に内分する点を$D$、辺$OC$を$2:1$に内分する点を$E$とし、線分$DE$の中点を$P$、直線$OP$が平面$ABC$と交わる点を$Q$とする。
次の各問いに答えよ。
(1)
$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とおくとき、$\overrightarrow{ OP }$を$\vec{ a },\ \vec{ b },\ \vec{ c }$で表せ。
また、$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の大きさの比$|\overrightarrow{ OP }|:|\overrightarrow{ OQ }|$を最も簡単な整数比で表せ。

(2)
$\triangle ABQ$と$\triangle ABC$の面積比$\triangle ABQ:\triangle ABC$を最も簡単な整数比で表せ。
投稿日:2021.10.24

<関連動画>

福田の数学〜筑波大学2023年理系第3問〜球面に内接する四面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標空間内の原点Oを中心とする半径$r$の球面S上に4つの頂点がある四面体ABCDが
$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$
を満たしているとする。また三角形ABCの重心をGとする。
(1)$\overrightarrow{OG}$を$\overrightarrow{OD}$を用いて表せ。
(2)$\overrightarrow{OA}$・$\overrightarrow{OB}$+$\overrightarrow{OB}$・$\overrightarrow{OC}$+$\overrightarrow{OC}$・$\overrightarrow{OA}$を$r$を用いて表せ。
(3)点Pが球面S上を動くとき、$\overrightarrow{PA}$・$\overrightarrow{PB}$+$\overrightarrow{PB}$・$\overrightarrow{PC}$+$\overrightarrow{PC}$・$\overrightarrow{PA}$の最大値を$r$を用いて表せ。さらに、最大値をとるときの点Pに対して、|$\overrightarrow{PG}$|を$r$を用いて表せ。

2023筑波大学理系過去問
この動画を見る 

【数C】空間ベクトル:軸/平面に関して対称な点の考え方

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直方体OABC-DEFGについて、次の座標を求めよう。
(1)点Fからxy平面に下した垂線の足B
(2)点Fとyz平面に関して対称な点P
(3)点Fとy軸に関して対応な点Q
この動画を見る 

【数C】空間ベクトル:平面の方程式の求め方(①法線ベクトルを用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
この動画を見る 

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。
$(\textrm{a})\angle BAC \lt \angle ABC$を満たす場合、点Cは第$\boxed{ア}$象限に存在する。
$(\textrm{b})\angle ABC \lt \angle ACB$を満たす場合、点Cは$\boxed{イ}$の$\boxed{ウ}$に存在する。
$(\textrm{c})\angle ACB \lt \frac{\pi}{2}$を満たす場合、点Cは$\boxed{エ}$の$\boxed{オ}$に存在する。
$(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}$を満たす点Cが存在する領域(境界を含む)
の面積は$\frac{\boxed{カ}}{\boxed{キク }}\pi-\frac{\sqrt{\boxed{ケ }}}{\boxed{コ }}$である。
$\boxed{イ},\boxed{エ}$の解答群
①点Aを中心とし点Bを通る円
②点Bを中心とし点Aを通る円
③線分ABを直径とする円
④離心率が0.5で2点O,Aを焦点とする楕円
⑤離心率が0.5で2点O,Bを焦点とする楕円
⑥離心率が0.5で2点A,Bを焦点とする楕円
⑦線分ABを一辺にもち、重心のy座標が正である正三角形
⑧線分ABを一辺にもち、重心のy座標が正である正方形

$\boxed{ウ},\boxed{オ}$の解答群
①内部 ②周上 ③外部 ④重心

(2)座標空間内の4点$A(-1,0,0),B(1,0,0),C(s,t,0),D$を原点とし、
$\angle BAC \lt \angle ABC \lt \angle ACB$
を満たす四面体を考える。$t \gt 0$であり、点Dのz座標は正であるとする。
$(\textrm{a})\angle ADC=\frac{\pi}{2}$を満たす場合、点Dは$\boxed{サ }$に存在する。
$(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}$を満たす場合、
点Dのx座標はsであり、点Dは$(s,\boxed{シ},0)$を中心とする
半径$\boxed{ス}$の円周上にある。
$(\textrm{c})$以下では$t=\frac{4}{3}$とする。設問(1)の結果から、点Cのx座標sは
$\boxed{セ} \lt s \lt -\boxed{ソ}+\frac{\boxed{タ}\sqrt{\boxed{チ}}}{\boxed{ツ}}$の範囲をとりうる。この範囲でsが変化
するとき、$\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}$を満たす四面体ABCDの体積は
$s=\frac{\boxed{テ}}{\boxed{エ}}$のとき最大値$\frac{\boxed{ナ}}{\boxed{二ヌ }}$をとる。

2022杏林大学医学部過去問
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 
PAGE TOP