問題文全文(内容文):
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#熊本工業大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
投稿日:2021.10.10