重積分④【積分順序の変更】(高専数学 微積II,数学検定1級解析) - 質問解決D.B.(データベース)

重積分④【積分順序の変更】(高専数学 微積II,数学検定1級解析)

問題文全文(内容文):
積分順序の変更
(1)$\int_1^2 \int_0^{5-\frac{5}{2}y} f(x,y) dxdy$
(2)$\int_0^2 \int_0^{\frac{1}{2} \sqrt{4-x^2}} f(x,y) dxdy$
(3)$\int_1^e \int_0^{logx} f(x,y) dxdy$
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
積分順序の変更
(1)$\int_1^2 \int_0^{5-\frac{5}{2}y} f(x,y) dxdy$
(2)$\int_0^2 \int_0^{\frac{1}{2} \sqrt{4-x^2}} f(x,y) dxdy$
(3)$\int_1^e \int_0^{logx} f(x,y) dxdy$
投稿日:2020.10.27

<関連動画>

福田の数学〜慶應義塾大学2023年看護医療学部第1問(2)〜同じものを含む順列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)k a n g o g a k u の9文字すべてを並べてできる文字列の種類は全部で$\boxed{\ \ ウ\ \ }$通りであり、このうち子音と母音が交互に並ぶものは$\boxed{\ \ エ\ \ }$通りである。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

#青山学院大学#定積分#ますただ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin2x}{3+\cos^2x} dx$

出典:青山学院大学
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ a,bを定数とし、関数$f(x)=x^2+ax+b$ とする。方程式$f(x)=0$の2つの解$\alpha,\beta\\$
が次式で与えられている。
$\alpha=\frac{\sin\theta}{1+\cos\theta}$, $\beta=\frac{\sin\theta}{1-\cos\theta}\\$
ここで$\theta$は、$0 \lt \theta \lt \pi$の定数である。次の問いに答えよ。
$(1)a,b$を$\theta$を用いて表せ。
$(2)\theta$が$0$ $\lt \theta \pi$で変化するとき、放物線$y=f(x)$の頂点の軌跡を求めよ。
$(3)\int_0^{2\sin\theta}f(x)dx=0$ となる$\theta$の値を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(4)〜空間内の格子点から正三角形ができる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(4)次の操作(*)を考える。
(*)1個のさいころを3回続けて投げ、出た目を順に$a_1$, $a_2$, $a_3$とする。
$a_1$, $a_2$, $a_3$を3で割った余りをそれぞれ$r_1$, $r_2$, $r_3$とするとき、座標空間の点($r_1$, $r_2$, $r_3$)を定める。
この操作(*)を3回続けて行い、定まる点を順に$A_1$, $A_2$, $A_3$とする。このとき、$A_1$, $A_2$, $A_3$が正三角形の異なる3頂点となる確率は$\boxed{\ \ エ\ \ }$である。
この動画を見る 

大学入試問題#868「ヒントがあれば、どうってことない」 #埼玉医科大学(2010) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉医科大学
指導講師: ますただ
問題文全文(内容文):
$a \leq b \leq c$とする。
$\sqrt{ 10+\sqrt{ 24 }+\sqrt{ 40 }+\sqrt{ 60 } }=\sqrt{ a }+\sqrt{ b }+\sqrt{ c }=$であるとき、$a,b,c$の値を求めよ。

出典:2010年埼玉医科大学
この動画を見る 
PAGE TOP