【数Ⅰ】【図形と計量】三角比を利用した表し方2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【図形と計量】三角比を利用した表し方2 ※問題文は概要欄

問題文全文(内容文):
$△ABC$において,$AC=k,\angle A=\alpha, \angle B=\beta$とする。辺BCの長さを$k,\alpha,\beta$を用いて表せ。ただし,$\alpha,\beta$は鋭角とする。
チャプター:

■チャプター
0:00 オープニング
0:07 解説開始!まずは問題整理
0:59 BCの長さをxとおく
1:19 CからABに垂線を引く
1:41 △CAHと△CHBの共通部分
2:09 CHをkとαで表す
2:25 CHをxとβで表す
2:39 xを求める

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$AC=k,\angle A=\alpha, \angle B=\beta$とする。辺BCの長さを$k,\alpha,\beta$を用いて表せ。ただし,$\alpha,\beta$は鋭角とする。
投稿日:2024.11.11

<関連動画>

【数検準2級】高校数学:数学検定準2級2次:問2

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問2.次の問いに答えなさい。
(3) 正の数xに対して、xを超えない最大の整数をxの整数部分、xからxの整数部分を引いた値をxの小数部分といいます。
たとえば$\sqrt2(=1.414…)$については、$1\lt\sqrt2\lt2$より、$\sqrt2$の整数部分は1、$\sqrt2$の小数部分は$\sqrt2-1$となります。
$\sqrt5$の小数部分をaとするとき、$a^2+4a$の値を求めなさい。
この動画を見る 

福田のわかった数学〜高校1年生035〜必要条件・十分条件

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 必要条件・十分条件\\
a \gt 0とする。2つの条件p,qを\\
p:|x-1| \leqq a, q:|x| \lt 2 とする。\\
\\
(1)pがqの十分条件となるaの範囲\\
(2)pがqの必要条件となるaの範囲\\
\end{eqnarray}
この動画を見る 

何でもない不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$2^x+2^{\vert x\vert}\geqq 2\sqrt2$
この動画を見る 

気づけば一瞬!!白陵

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ab=30,bc=18,ca=15(a>0,b>0,c>0)のとき
abc=? a=? b=? c=?
この動画を見る 

福田のわかった数学〜高校1年生042〜三角比の相互関係

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$三角比の相互関係
$0° \lt \theta \lt 180°$とする。
$4\cos\theta+2\sin\theta=\sqrt2$のとき
$\tan\theta$ の値を求めよ。
この動画を見る 
PAGE TOP