問題文全文(内容文):
2つの自然数$a$、$b$に対して、$a$を$b$で割ったときの商を$[a☆b]$、余りを$[a◎b]$で表すこととする。
ただし、商は0以上の整数とする。
例えば、20を3で割ると商が6、余りが2であるから、$[20☆3]=6$、$[20◎3]=2$となる。
また、 3を5で割ると商が0、余りが3であるから、$[3☆5]=0$、$[3◎5]=3$となる。
このとき次の間1~間4に答えなさい。
問1 次の(ア)、(イ)に入る数をそれぞれ書きなさい。
$[37☆7]=$(ア)、$[37◎7]=$(イ)
問2 $[a☆7]=7$を成り立たせる自然数は全部で何個あるか、求めなさい。
問3 $[a☆14]=3$・・①、$[a◎7]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$をすべて求めなさい。
問4 $[a◎3]=1$・・①、$[a◎4]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$のうち、2桁の自然数は全部で何個あるか求めなさい。
2つの自然数$a$、$b$に対して、$a$を$b$で割ったときの商を$[a☆b]$、余りを$[a◎b]$で表すこととする。
ただし、商は0以上の整数とする。
例えば、20を3で割ると商が6、余りが2であるから、$[20☆3]=6$、$[20◎3]=2$となる。
また、 3を5で割ると商が0、余りが3であるから、$[3☆5]=0$、$[3◎5]=3$となる。
このとき次の間1~間4に答えなさい。
問1 次の(ア)、(イ)に入る数をそれぞれ書きなさい。
$[37☆7]=$(ア)、$[37◎7]=$(イ)
問2 $[a☆7]=7$を成り立たせる自然数は全部で何個あるか、求めなさい。
問3 $[a☆14]=3$・・①、$[a◎7]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$をすべて求めなさい。
問4 $[a◎3]=1$・・①、$[a◎4]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$のうち、2桁の自然数は全部で何個あるか求めなさい。
単元:
#数学(中学生)#中1数学#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
2つの自然数$a$、$b$に対して、$a$を$b$で割ったときの商を$[a☆b]$、余りを$[a◎b]$で表すこととする。
ただし、商は0以上の整数とする。
例えば、20を3で割ると商が6、余りが2であるから、$[20☆3]=6$、$[20◎3]=2$となる。
また、 3を5で割ると商が0、余りが3であるから、$[3☆5]=0$、$[3◎5]=3$となる。
このとき次の間1~間4に答えなさい。
問1 次の(ア)、(イ)に入る数をそれぞれ書きなさい。
$[37☆7]=$(ア)、$[37◎7]=$(イ)
問2 $[a☆7]=7$を成り立たせる自然数は全部で何個あるか、求めなさい。
問3 $[a☆14]=3$・・①、$[a◎7]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$をすべて求めなさい。
問4 $[a◎3]=1$・・①、$[a◎4]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$のうち、2桁の自然数は全部で何個あるか求めなさい。
2つの自然数$a$、$b$に対して、$a$を$b$で割ったときの商を$[a☆b]$、余りを$[a◎b]$で表すこととする。
ただし、商は0以上の整数とする。
例えば、20を3で割ると商が6、余りが2であるから、$[20☆3]=6$、$[20◎3]=2$となる。
また、 3を5で割ると商が0、余りが3であるから、$[3☆5]=0$、$[3◎5]=3$となる。
このとき次の間1~間4に答えなさい。
問1 次の(ア)、(イ)に入る数をそれぞれ書きなさい。
$[37☆7]=$(ア)、$[37◎7]=$(イ)
問2 $[a☆7]=7$を成り立たせる自然数は全部で何個あるか、求めなさい。
問3 $[a☆14]=3$・・①、$[a◎7]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$をすべて求めなさい。
問4 $[a◎3]=1$・・①、$[a◎4]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$のうち、2桁の自然数は全部で何個あるか求めなさい。
投稿日:2019.01.25