微分方程式④-1【同次形】(高専数学 数検1級) - 質問解決D.B.(データベース)

微分方程式④-1【同次形】(高専数学 数検1級)

問題文全文(内容文):
(1)$\frac{dx}{dt}=\frac{x}{t}-\frac{2t}{x}$
(2)$\frac{dx}{dt}=\frac{x}{t}+cos^2\frac{x}{t}$
(3)$\frac{dx}{dt}=\frac{x}{t}+e^{-\frac{x}{t}}$
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=\frac{x}{t}-\frac{2t}{x}$
(2)$\frac{dx}{dt}=\frac{x}{t}+cos^2\frac{x}{t}$
(3)$\frac{dx}{dt}=\frac{x}{t}+e^{-\frac{x}{t}}$
投稿日:2020.12.05

<関連動画>

微分方程式⑩-2【定数係数でない微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(3)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+4x=0$
(4)$t^2\dfrac{d^2x}{dt^2}+3t\dfrac{dx}{dt}+x=0$
この動画を見る 

重積分⑨-4【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.

$\iint_D\ (1+x^2+y^2)^{-\frac{5}{2}}dx\ dy $
$D:x\geqq 0,y \geqq 0$とする.
この動画を見る 

#22 数検1級1次 過去問 無限級数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{i=1}^\infty\ \tan^{-1}\displaystyle \frac{1}{k^2+k+1}$を求めよ。
この動画を見る 

微分方程式⑦-3【2階微分方程式の一般解を求める】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-\dfrac{dx}{dt}-2x=e^{-2t}$
(2)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}+2x=e^{-2t}$
(3)$\dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+4x=e^{-2t}$

(1)~(3)の2階微分方程式の一般解を求めよ.
この動画を見る 

#26 数検1級1次 過去問 複雑な方程式

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#数と式#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^3+y^3+z^3=36 \\
xyz=6
\end{array}
\right.
\end{eqnarray}$
において、$x \gt y \gt z$を満たす解を求めよ。
この動画を見る 
PAGE TOP