数学「大学入試良問集」【2−3 方程式と整数解】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【2−3 方程式と整数解】を宇宙一わかりやすく

問題文全文(内容文):
$p,q$を整数とし、$f(x)=x^2+px+q$とおく。
(1)
有理数$a$が方程式$f(x)=0$の一つの解ならば、$a$は整数であることを示せ。

(2)
$f(1)$も$f(2)$も$2$で割り切れないとき、方程式$f(x)=0$は整数の解を持たないことを示せ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$p,q$を整数とし、$f(x)=x^2+px+q$とおく。
(1)
有理数$a$が方程式$f(x)=0$の一つの解ならば、$a$は整数であることを示せ。

(2)
$f(1)$も$f(2)$も$2$で割り切れないとき、方程式$f(x)=0$は整数の解を持たないことを示せ。
投稿日:2021.03.17

<関連動画>

福田の数学〜北里大学2021年医学部第1問(3)〜三角関数への置き換えによる最大値の求め方

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)$0 \leqq \theta \lt 2\pi$のとき、関数$f(\theta)=2\cos\theta(\sqrt3\sin\theta+\cos\theta)$の最大値は
$\boxed{ ケ}$である。
$g(x,y)=\frac{2\sqrt3xy+2x^2}{x^4+2x^2y^2+y^4+1}$について考える。aを正の定数とし、点(x,y)が
円$x^2+y^2=a^2$上を動くとき、g$(x,y)$の最大値はaを用いて$\boxed{コ}$と表せる。
また、点(x,y)がxy平面全体を動くとき、g(x,y)の最大値は$\boxed{サ}$である。

2021北里大学医学部過去問
この動画を見る 

大学入試問題#450「計算の正確性のみを問う問題」 横浜国立大学(2006) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x^2\sin^3x\ dx$

出典:2006年横浜国立大学 入試問題
この動画を見る 

福田の数学〜双曲線と直線の位置関係を考えよう〜明治大学2023年全学部統一Ⅲ第3問〜双曲線と直線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 座標平面上の双曲線$x^2$-$4y^2$=5を$C$とおき、点(1,0)を通り傾き$m$が正となる直線を$l$とおく。$C$の漸近線は$y$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$と$y$=$-\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}x$である。また、$l$と$C$の共有点がただ1つとなるのは、$m$が$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$または$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ のときである。
$m$=$\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$ならば$l$は$C$の接線となる。ここで$a$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$ とおく。$m$<$a$であるときに、$l$と$C$の共有点の$y$座標のうち最大のものを$y_m$とすれば、
$y_m$=$\displaystyle\frac{m}{\boxed{\ \ キ\ \ }-\boxed{\ \ ク\ \ }m^2}\left(-\boxed{\ \ ケ\ \ }+\sqrt{\boxed{\ \ コ\ \ }-\boxed{\ \ サシ\ \ }m^2}\right)$
となる。このとき、$\displaystyle\lim_{m \to a-0}y_m$=$\boxed{\ \ ス\ \ }$ が成り立つ。
この動画を見る 

京都大学 三次方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+x-8=0$はただ1つの実根を1と2の間にもち、それが無理数であることを示せ

出典:1966年京都大学 過去問
この動画を見る 

九州大 係数三乗根の三次方程式の解の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \in \mathbb{R}(a$は実数$)$
$x^3-3\sqrt[ 3 ]{ 4-a^2 }x+2=0$
実数解の個数

出典:1964年九州大学 過去問
この動画を見る 
PAGE TOP