福田の数学〜京都大学2024年文系第5問〜放物線の一部と直線が異なる2つの共有点をもつ条件 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年文系第5問〜放物線の一部と直線が異なる2つの共有点をもつ条件

問題文全文(内容文):
$\Large\boxed{5}$ 関数$y$=$x^2$-$4x$+5 のグラフの$x$>1 の部分をCとする。このとき、下の条件を満たすような正の実数$a$,$b$について、座標平面の点($a$,$b$)が動く領域の面積を求めよ。
「Cと直線$y$=$ax$+$b$ は二つの異なる共有点をもつ。」
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 関数$y$=$x^2$-$4x$+5 のグラフの$x$>1 の部分をCとする。このとき、下の条件を満たすような正の実数$a$,$b$について、座標平面の点($a$,$b$)が動く領域の面積を求めよ。
「Cと直線$y$=$ax$+$b$ は二つの異なる共有点をもつ。」
投稿日:2024.03.16

<関連動画>

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ a,bを定数とし、関数$f(x)=x^2+ax+b$ とする。方程式$f(x)=0$の2つの解$\alpha,\beta\\$
が次式で与えられている。
$\alpha=\frac{\sin\theta}{1+\cos\theta}$, $\beta=\frac{\sin\theta}{1-\cos\theta}\\$
ここで$\theta$は、$0 \lt \theta \lt \pi$の定数である。次の問いに答えよ。
$(1)a,b$を$\theta$を用いて表せ。
$(2)\theta$が$0$ $\lt \theta \pi$で変化するとき、放物線$y=f(x)$の頂点の軌跡を求めよ。
$(3)\int_0^{2\sin\theta}f(x)dx=0$ となる$\theta$の値を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 

文系積分の基本 中央大(文学部)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021中央大学過去問題
$y=x(x-1)^2 \cdots$①
$y=kx \cdots$②
①と②は異なる3点で交わり、①と②とで囲まれる2つの部分の面積が等しい
kの値
この動画を見る 

大学入試問題#175 名古屋工業大学2020 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{2x^3-x^2+5}{x^2+1}\ dx$を計算せよ。

出典:2020年名古屋工業大学 入試問題
この動画を見る 

福田の数学〜東京大学2025理系第4問〜関数の値が平方数となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

この問いでは、

$0$以上の整数の$2$乗になる数を平方数と呼ぶ。

$a$を正の整数とし、

$f_a (x) = x^2+x-a$とおく。

(1)$n$を正の整数とする。

$f_a(n)$は平方数ならば、$n\leqq a$であることを示せ。

(2)$f_a (n)$が平方数となる正の整数$n$の個数を

$N_a$とおく。

次の条件$(i),(ii)$が同値であることを示せ。

$(i)\quad N_a=1$である。

$(ii)\quad 4a+1$は素数である。

$2025$年東京大学理系過去問題
この動画を見る 

奈良県立医大 接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(P \neq 0)$
$f(x)=x^3+Px+P$の接線で$(1,1)$を通るものがちょうど2本ある。
$P$の値と接線の方程式を求めよ

出典:2013年奈良県立医科大学 過去問
この動画を見る 
PAGE TOP