問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-\dfrac{dx}{dt}-2x=e^{-2t}$
(2)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}+2x=e^{-2t}$
(3)$\dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+4x=e^{-2t}$
(1)~(3)の2階微分方程式の一般解を求めよ.
(1)$\dfrac{d^2x}{dt^2}-\dfrac{dx}{dt}-2x=e^{-2t}$
(2)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}+2x=e^{-2t}$
(3)$\dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+4x=e^{-2t}$
(1)~(3)の2階微分方程式の一般解を求めよ.
単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-\dfrac{dx}{dt}-2x=e^{-2t}$
(2)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}+2x=e^{-2t}$
(3)$\dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+4x=e^{-2t}$
(1)~(3)の2階微分方程式の一般解を求めよ.
(1)$\dfrac{d^2x}{dt^2}-\dfrac{dx}{dt}-2x=e^{-2t}$
(2)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}+2x=e^{-2t}$
(3)$\dfrac{d^2x}{dt^2}+4\dfrac{dx}{dt}+4x=e^{-2t}$
(1)~(3)の2階微分方程式の一般解を求めよ.
投稿日:2020.12.21





