問題文全文(内容文):
$\boxed{7}$ $c:y=\dfrac{x}{\sqrt{1+x^2}} \quad (0\leqq x\leqq 1)$
(1)$c,x=1$,$x$軸で囲まれた図形を$x$軸中心に回転させた体積$V$を求めよ.
(2)$c,y=\dfrac{1}{\sqrt2},y$軸で囲まれた図形を$y$軸中心に回転させた体積$V_2$を求めよ.
$\boxed{7}$ $c:y=\dfrac{x}{\sqrt{1+x^2}} \quad (0\leqq x\leqq 1)$
(1)$c,x=1$,$x$軸で囲まれた図形を$x$軸中心に回転させた体積$V$を求めよ.
(2)$c,y=\dfrac{1}{\sqrt2},y$軸で囲まれた図形を$y$軸中心に回転させた体積$V_2$を求めよ.
単元:
#数学検定・数学甲子園・数学オリンピック等#立体図形#体積・表面積・回転体・水量・変化のグラフ#数学検定#数学検定準1級
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$ $c:y=\dfrac{x}{\sqrt{1+x^2}} \quad (0\leqq x\leqq 1)$
(1)$c,x=1$,$x$軸で囲まれた図形を$x$軸中心に回転させた体積$V$を求めよ.
(2)$c,y=\dfrac{1}{\sqrt2},y$軸で囲まれた図形を$y$軸中心に回転させた体積$V_2$を求めよ.
$\boxed{7}$ $c:y=\dfrac{x}{\sqrt{1+x^2}} \quad (0\leqq x\leqq 1)$
(1)$c,x=1$,$x$軸で囲まれた図形を$x$軸中心に回転させた体積$V$を求めよ.
(2)$c,y=\dfrac{1}{\sqrt2},y$軸で囲まれた図形を$y$軸中心に回転させた体積$V_2$を求めよ.
投稿日:2020.12.31





