重積分⑨-7【広義積分】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑨-7【広義積分】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
$D:1\leqq x,1\leqq y$である.
$\iint_D \dfrac{1}{x^2y^2} \ dx \ dy$

これを解け.
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$D:1\leqq x,1\leqq y$である.
$\iint_D \dfrac{1}{x^2y^2} \ dx \ dy$

これを解け.
投稿日:2021.01.25

<関連動画>

重積分⑦-4【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_D(4-x^2-y^2)dxdy$
$D:x^2+(y-1)^2 \leqq 1 $ , $y \leqq x$
この動画を見る 

#49 数検1級1次 過去問 根号を外す

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#2次関数とグラフ#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ -5+2\sqrt{ 13 } }\ $の二重根号をはずせ
この動画を見る 

微分方程式⑤-1【1階線形微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=- \frac{x}{t}=t+1$
(2)$\frac{dx}{dt}+x=e^{-t}$
(3)$\frac{dx}{dt}+xcost = 2te^{-sint}$
1階線形微分方程式
$\frac{dx}{dt}+P(t)x=Q(t)$
この動画を見る 

重積分⑫-1【図形Dの重心】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
平面上の図形Dの重心Gは
$G\begin{pmatrix}
∬_Dxdxdy & ∬_Dydxdy \\
∬_Ddxdy & ∬_Ddxdy
\end{pmatrix}$
△OABの重心Gは
$G(\frac{0+3+3}{3},\frac{0+0+3}{3})$
$G(2,1)$
*図は動画内参照
この動画を見る 

微分方程式②【微分方程式の解】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\frac{dx}{dt}=x+e^{2t}$
(1)$x=e^{2t}$が解
(2)$x=e^{2t}+ce^t$が一般解
cは任意定数
(3)t=0,x=-1をみたす特殊解を求めよ。
この動画を見る 
PAGE TOP