問題文全文(内容文):
$\boxed{7}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$y=6\ \sin\theta\ \cos\theta+8\cos^2\theta-4$
の最大値,最小値を求めよ.
$\boxed{7}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$y=6\ \sin\theta\ \cos\theta+8\cos^2\theta-4$
の最大値,最小値を求めよ.
単元:
#数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$y=6\ \sin\theta\ \cos\theta+8\cos^2\theta-4$
の最大値,最小値を求めよ.
$\boxed{7}$
$0\leqq \theta \leqq \dfrac{\pi}{2}$
$y=6\ \sin\theta\ \cos\theta+8\cos^2\theta-4$
の最大値,最小値を求めよ.
投稿日:2021.02.19





