練習問題21 教採問題集 空間ベクトルによる直線 - 質問解決D.B.(データベース)

練習問題21 教採問題集 空間ベクトルによる直線

問題文全文(内容文):
$\ell:x+1=\dfrac{y-1}{a}=z$,
$\ell_2;-x+1=y+b=\dfrac{z-1}{2}$
は交わり,なす角は$60°$であるとする.
このとき,$a,b$の値を求めよ.
単元: #空間ベクトル#空間ベクトル#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\ell:x+1=\dfrac{y-1}{a}=z$,
$\ell_2;-x+1=y+b=\dfrac{z-1}{2}$
は交わり,なす角は$60°$であるとする.
このとき,$a,b$の値を求めよ.
投稿日:2021.03.28

<関連動画>

【数C】【空間ベクトル】4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。
この動画を見る 

【高校数学】 数B-42 空間ベクトルの内積②

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つのベクトル$\overrightarrow{a}=(0,2,1),\overrightarrow(b)=(2,-2,1)$に垂直で,
大きさが3であるベクトル$\overrightarrow{p}$を求めよう.

②3点$A(0,1,1),B(-1,-1,2),C(2,3,1)$を頂点とする$\triangle ABC$について,
$\angle BAC$の大きさと$\triangle ABC$の面積を求めよう.
この動画を見る 

福田の数学〜東北大学2023年理系第5問〜空間ベクトルと内積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 四面体OABCにおいて、$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおき、次が成り立つとする。
$\angle$AOB=60°, |$\overrightarrow{a}$|=2, |$\overrightarrow{b}$|=3, |$\overrightarrow{c}$|=$\sqrt 6$, $\overrightarrow{b}$・$\overrightarrow{c}$=3
ただし、$\overrightarrow{b}$・$\overrightarrow{c}$は、2つのベクトル$\overrightarrow{b}$と$\overrightarrow{c}$の内積を表す。さらに、線分OCと線分ABは垂直であるとする。点Cから3点O, A, Bを含む平面に下ろした垂線をCHとし、点Oから3点A, B, Cを含む平面に下ろした垂線をOKとする。
(1)$\overrightarrow{a}$・$\overrightarrow{b}$と$\overrightarrow{c}$・$\overrightarrow{a}$を求めよ。
(2)ベクトル$\overrightarrow{OH}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ。
(3)ベクトル$\overrightarrow{c}$とベクトル$\overrightarrow{HK}$は平行であることを示せ。

2023東北大学理系過去問
この動画を見る 

【数C】【空間ベクトル】四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OPをa、b、cを用いて表せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OA=a、OB=b、OC=cとするとき、OPをa、b、cを用いて表せ
この動画を見る 

福田の数学〜サッカーボール上のベクトルを求めよう〜慶應義塾大学2023年総合政策学部第5問〜空間の位置ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$サッカーボールは12個の正五角形と20個の正六角形からなり、切頂二十面体と呼ばれる構造をしている。以下では、正五角形と正六角形の各辺の長さを1であるとし、右図のように頂点にアルファベットで名前を付ける。なお、正五角形の辺と対角線の長さの比は
$1:\frac{1+\sqrt5}{2}$である。

(1)$\overrightarrow{ OA_1 }$と$\overrightarrow{ OA_2 }$の内積は,
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\dfrac{\boxed{ア}+\boxed{イ}\sqrt{\boxed{ウ}}}{\boxed{エ}}$である.

2023慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP