問題文全文(内容文):
$\boxed{4}$
曲線$y=x+e^x,x$軸,$x=1,x=2$で囲まれた
部分を$S$とする.
(1)$x$軸中心に$S$を回転した体積$V_1$を求めよ.
(2)$y$軸中心に$S$を回転した体積$V_2$を求めよ.
$\boxed{4}$
曲線$y=x+e^x,x$軸,$x=1,x=2$で囲まれた
部分を$S$とする.
(1)$x$軸中心に$S$を回転した体積$V_1$を求めよ.
(2)$y$軸中心に$S$を回転した体積$V_2$を求めよ.
単元:
#積分とその応用#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
曲線$y=x+e^x,x$軸,$x=1,x=2$で囲まれた
部分を$S$とする.
(1)$x$軸中心に$S$を回転した体積$V_1$を求めよ.
(2)$y$軸中心に$S$を回転した体積$V_2$を求めよ.
$\boxed{4}$
曲線$y=x+e^x,x$軸,$x=1,x=2$で囲まれた
部分を$S$とする.
(1)$x$軸中心に$S$を回転した体積$V_1$を求めよ.
(2)$y$軸中心に$S$を回転した体積$V_2$を求めよ.
投稿日:2021.04.10





