15和歌山県教員採用試験(数学:2番 三角関数) - 質問解決D.B.(データベース)

15和歌山県教員採用試験(数学:2番 三角関数)

問題文全文(内容文):
$\boxed{2}$

$0\leqq x\leqq \dfrac{\pi}{2}$とする.
$y=\dfrac{1}{2-\sin^2x}\dfrac{1}{2-\cos^2x}$の
最大値,最小値を求めよ.

単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$

$0\leqq x\leqq \dfrac{\pi}{2}$とする.
$y=\dfrac{1}{2-\sin^2x}\dfrac{1}{2-\cos^2x}$の
最大値,最小値を求めよ.

投稿日:2021.05.13

<関連動画>

13東京都教員採用試験(数学:6番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
6⃣$argZ=\frac{4}{3} \pi$ , $arg(1-z)=\frac{\pi}{4}$
$arg \frac{z}{(1-z)^2}$ , |z|を求めよ。
この動画を見る 

03東京都教員採用試験(数学:1-(4) 解の個数)

アイキャッチ画像
単元: #数Ⅱ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$x^2-x-k=2|x-1|$が異なる3個の解をもつとき、$k$の値を求めよ。

出典:東京都教員採用試験
この動画を見る 

00兵庫県教員採用試験(数学:4番 対数)

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#指数関数と対数関数#恒等式・等式・不等式の証明#軌跡と領域#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣$log_xy+2log_yx \leqq 3$
をみたす(x,y)の存在する領域を図示せよ
この動画を見る 

04神奈川県教員採用試験(数学:1番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$x,y \in \mathbb{N}$ , $1 \leqq x, y \leqq 9$
$\frac{10+x}{10x+y} = \frac{1}{y}$
をみたす組(x,y)を全て求めよ。
この動画を見る 

04愛知県教員採用試験(数学:14番 楕円、接線、相加相乗平均)

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{14}$ $a\gt 0,b\gt 0$

楕円$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$
の接線がx軸,y軸と交わる点を$P.Q$とする.
$PQ$の最小値を求めよ.
この動画を見る 
PAGE TOP