問題文全文(内容文):
3 座標空間において、4点をA(0, 0, 2), B(-1, 0, 4), C(1, 1, 0), D(0, 0, 1) とする。次の問いに答えよ。
(1) Pを直線AB上の点とするとき、三角形PCDの面積の最小値を求めよ。
(2) Q,Rを直線 CD上のとし、QR = √3とする。三角形QABの面積と三角形 RAB の面積の和の最小値を求めよ。
3 座標空間において、4点をA(0, 0, 2), B(-1, 0, 4), C(1, 1, 0), D(0, 0, 1) とする。次の問いに答えよ。
(1) Pを直線AB上の点とするとき、三角形PCDの面積の最小値を求めよ。
(2) Q,Rを直線 CD上のとし、QR = √3とする。三角形QABの面積と三角形 RAB の面積の和の最小値を求めよ。
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
3 座標空間において、4点をA(0, 0, 2), B(-1, 0, 4), C(1, 1, 0), D(0, 0, 1) とする。次の問いに答えよ。
(1) Pを直線AB上の点とするとき、三角形PCDの面積の最小値を求めよ。
(2) Q,Rを直線 CD上のとし、QR = √3とする。三角形QABの面積と三角形 RAB の面積の和の最小値を求めよ。
3 座標空間において、4点をA(0, 0, 2), B(-1, 0, 4), C(1, 1, 0), D(0, 0, 1) とする。次の問いに答えよ。
(1) Pを直線AB上の点とするとき、三角形PCDの面積の最小値を求めよ。
(2) Q,Rを直線 CD上のとし、QR = √3とする。三角形QABの面積と三角形 RAB の面積の和の最小値を求めよ。
投稿日:2024.11.06





