問題文全文(内容文):
【1】 次の□に適当な数を入れなさい。
(1)
\[
\left( 77 \div 17 - 3\frac{1}{34} \right) \times \left( \frac{4}{9} - \frac{3}{7} \right) = \boxed{\text{ア}}\frac{\boxed{\text{イ}}}{\boxed{\text{ウ}}}
\]
(2)
\[
\left\{ 3.88 - \frac{2}{3} \times \left( 2\frac{1}{6} + 3\frac{1}{3} \right) \right\} \div \left( 5\frac{1}{2} - \frac{\boxed{\text{イ}}}{\boxed{\text{ア}}} \right) = \frac{8}{175}
\]
(3)
\[
\frac{3}{7} で割っても\, 2\frac{4}{5} をかけても整数になる数のうち、最も小さい数は\quad \boxed{\text{ア}}\frac{\boxed{\text{イ}}}{\boxed{\text{ウ}}}
\]
(4) 1, 2, 3, 4,5の5個の数字の中から、異なる3個の数字を選んで3桁の整数をつくるとき、250以上450未満の整数は全部で□個つくることができます。
(5) 2025の約数をすべて加えると□になります。
【1】 次の□に適当な数を入れなさい。
(1)
\[
\left( 77 \div 17 - 3\frac{1}{34} \right) \times \left( \frac{4}{9} - \frac{3}{7} \right) = \boxed{\text{ア}}\frac{\boxed{\text{イ}}}{\boxed{\text{ウ}}}
\]
(2)
\[
\left\{ 3.88 - \frac{2}{3} \times \left( 2\frac{1}{6} + 3\frac{1}{3} \right) \right\} \div \left( 5\frac{1}{2} - \frac{\boxed{\text{イ}}}{\boxed{\text{ア}}} \right) = \frac{8}{175}
\]
(3)
\[
\frac{3}{7} で割っても\, 2\frac{4}{5} をかけても整数になる数のうち、最も小さい数は\quad \boxed{\text{ア}}\frac{\boxed{\text{イ}}}{\boxed{\text{ウ}}}
\]
(4) 1, 2, 3, 4,5の5個の数字の中から、異なる3個の数字を選んで3桁の整数をつくるとき、250以上450未満の整数は全部で□個つくることができます。
(5) 2025の約数をすべて加えると□になります。
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#約数・倍数を利用する問題#過去問解説(学校別)#慶應義塾中等部
指導講師:
重吉
問題文全文(内容文):
【1】 次の□に適当な数を入れなさい。
(1)
\[
\left( 77 \div 17 - 3\frac{1}{34} \right) \times \left( \frac{4}{9} - \frac{3}{7} \right) = \boxed{\text{ア}}\frac{\boxed{\text{イ}}}{\boxed{\text{ウ}}}
\]
(2)
\[
\left\{ 3.88 - \frac{2}{3} \times \left( 2\frac{1}{6} + 3\frac{1}{3} \right) \right\} \div \left( 5\frac{1}{2} - \frac{\boxed{\text{イ}}}{\boxed{\text{ア}}} \right) = \frac{8}{175}
\]
(3)
\[
\frac{3}{7} で割っても\, 2\frac{4}{5} をかけても整数になる数のうち、最も小さい数は\quad \boxed{\text{ア}}\frac{\boxed{\text{イ}}}{\boxed{\text{ウ}}}
\]
(4) 1, 2, 3, 4,5の5個の数字の中から、異なる3個の数字を選んで3桁の整数をつくるとき、250以上450未満の整数は全部で□個つくることができます。
(5) 2025の約数をすべて加えると□になります。
【1】 次の□に適当な数を入れなさい。
(1)
\[
\left( 77 \div 17 - 3\frac{1}{34} \right) \times \left( \frac{4}{9} - \frac{3}{7} \right) = \boxed{\text{ア}}\frac{\boxed{\text{イ}}}{\boxed{\text{ウ}}}
\]
(2)
\[
\left\{ 3.88 - \frac{2}{3} \times \left( 2\frac{1}{6} + 3\frac{1}{3} \right) \right\} \div \left( 5\frac{1}{2} - \frac{\boxed{\text{イ}}}{\boxed{\text{ア}}} \right) = \frac{8}{175}
\]
(3)
\[
\frac{3}{7} で割っても\, 2\frac{4}{5} をかけても整数になる数のうち、最も小さい数は\quad \boxed{\text{ア}}\frac{\boxed{\text{イ}}}{\boxed{\text{ウ}}}
\]
(4) 1, 2, 3, 4,5の5個の数字の中から、異なる3個の数字を選んで3桁の整数をつくるとき、250以上450未満の整数は全部で□個つくることができます。
(5) 2025の約数をすべて加えると□になります。
投稿日:2025.02.13





