#慶應義塾大学2024#対数_65#Shorts - 質問解決D.B.(データベース)

#慶應義塾大学2024#対数_65#Shorts

問題文全文(内容文):
$ x\gt 1,y \gt 1,z \gt 1$
$\log_x y +\log_y x+\log_y z+4\log_z y \leqq 6$
$4xz+3x-7y-5z=-5$
を満たす$x,y,z$の値を求めよ.

2024慶應義塾大学環境情報学部過去問題
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$ x\gt 1,y \gt 1,z \gt 1$
$\log_x y +\log_y x+\log_y z+4\log_z y \leqq 6$
$4xz+3x-7y-5z=-5$
を満たす$x,y,z$の値を求めよ.

2024慶應義塾大学環境情報学部過去問題
投稿日:2024.10.16

<関連動画>

【数Ⅱ】【指数関数と対数関数】対数不等式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値があれば、それを求めよ。
また、そのときの $x$ の値を求めよ。
(1) $y = (\log_{3}{x})^2 + 2\log_{3}{x}$
(2) $y = \left( \log_{2}{\frac{4}{x}} \right) \left( \log_{2}{\frac{x}{2}} \right)$
(3) $y = (\log_{3}{x})^2 - 4\log_{3}{x} + 3 \quad (1 \leq x \leq 27)$

関数 $y = \log_{\frac{1}{3}}{x} + \log_{\frac{1}{3}}{(6 - x)}$ の最小値を求めよ。

$a > 0$, $b > 0$ のとき、不等式

$\log_{2} (a + \frac{1}{b}) + \log_{2} (b + \frac{1}{a}) \geq 2$

を証明せよ。
この動画を見る 

18神奈川県教員採用試験(数学:対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$α= 5^{log_{25}^3}+1$のとき$4^{log_2^α}$の値を求めよ。
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.8対数 log

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
対数 logの解説動画です
この動画を見る 

三重大 対数と二次関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha \gt 0$とする.
$f(x)=\log_3 \left(-\dfrac{1}{2}x^2+\dfrac{1}{2}\alpha x+9 \right)$

$f(x)$が整数となる$x$が$0\leqq x\leqq \alpha$の範囲でちょうど$6$個あるような$\alpha$の範囲を求めよ.

三重大過去問
この動画を見る 

対数の基本

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023横浜市立(医・理)
$
\\
2^{log_49}の値
$
この動画を見る 
PAGE TOP