【数C】【空間ベクトル】四面体ABCDにおいて、辺AB,CB,AD,CDを1:2に内分する点を,それぞれP,Q,R,Sとするとき,四角形PQRSは平行四辺形であることを示せ。 - 質問解決D.B.(データベース)

【数C】【空間ベクトル】四面体ABCDにおいて、辺AB,CB,AD,CDを1:2に内分する点を,それぞれP,Q,R,Sとするとき,四角形PQRSは平行四辺形であることを示せ。

問題文全文(内容文):
四面体ABCDにおいて、辺AB,CB,AD,CDを1:2に内分する点を,それぞれP,Q,R,Sとするとき,四角形PQRSは平行四辺形であることを示せ。
チャプター:

0:00 オープニング、問題概要
0:28 平行四辺形の成立条件5つ
1:15 始点決定、立式
2:58 ベクトルが等しいとはどういうことか?

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDにおいて、辺AB,CB,AD,CDを1:2に内分する点を,それぞれP,Q,R,Sとするとき,四角形PQRSは平行四辺形であることを示せ。
投稿日:2025.07.31

<関連動画>

【高校数学】 数B-42 空間ベクトルの内積②

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つのベクトル$\overrightarrow{a}=(0,2,1),\overrightarrow(b)=(2,-2,1)$に垂直で,
大きさが3であるベクトル$\overrightarrow{p}$を求めよう.

②3点$A(0,1,1),B(-1,-1,2),C(2,3,1)$を頂点とする$\triangle ABC$について,
$\angle BAC$の大きさと$\triangle ABC$の面積を求めよう.
この動画を見る 

福田の数学〜大阪大学2023年理系第4問〜空間ベクトルと軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,b を$a^2+b^2>1$かつ b≠0 をみたす実数の定数とする。
座標空間のA (a,0,b) と点 P(x, y, 0) をとる。
点O(0, 0, 0) を通り直線APと垂直な平面をαとし、平面と直線AP との交点をQとする。

$(\overrightarrow{ AP }・\overrightarrow{ AO })^2=|\overrightarrow{ AP }|^2|\overrightarrow{ AQ }|^2$が成り立つことを示せ。

$|\overrightarrow{ OQ }|^2=1$ をみたすように点P(x,y,0) が xy平面上を動くとき、点Pの軌跡を求めよ。

2023大阪大学理系過去問
この動画を見る 

【球面の方程式って?】球面の方程式の解釈と求め方を解説!〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
球面の方程式の解釈と求め方について解説します。
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線を$l_1$とし、直線$l_1$に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は($\boxed{\ \ ク\ \ }$, $\boxed{\ \ ケ\ \ }$, $\boxed{\ \ コ\ \ }$)である。また、点Dを通り$l_1$と平行な直線を$l_2$とし、点Pが直線$l_2$上を、点Qが$xy$平面上の直線$y$=$-x$+4 上をそれぞれ自由に動くとき、$|\overrightarrow{PQ}|^2$の最小値は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP