問題文全文(内容文):
a,b,cを正の数とする。
2((a+b)/2 -√ab)<=3((a+b+c)/3 -³√abc)
を証明せよ。
a,b,cを正の数とする。
2((a+b)/2 -√ab)<=3((a+b+c)/3 -³√abc)
を証明せよ。
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
a,b,cを正の数とする。
2((a+b)/2 -√ab)<=3((a+b+c)/3 -³√abc)
を証明せよ。
a,b,cを正の数とする。
2((a+b)/2 -√ab)<=3((a+b+c)/3 -³√abc)
を証明せよ。
投稿日:2024.11.19





