福田のおもしろ数学473〜難しい連立方程式を解くための飛び道具 - 質問解決D.B.(データベース)

福田のおもしろ数学473〜難しい連立方程式を解くための飛び道具

問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
5\left(x+\dfrac{1}{x}\right)=12\left(y+\dfrac{1}{y}\right)=13\left(z+\dfrac{1}{z}\right) \\
xy+yz+zx=1
\end{array}
\right.
\end{eqnarray}$

を満たす実数$x,y,z$をすべて求めよ。
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
5\left(x+\dfrac{1}{x}\right)=12\left(y+\dfrac{1}{y}\right)=13\left(z+\dfrac{1}{z}\right) \\
xy+yz+zx=1
\end{array}
\right.
\end{eqnarray}$

を満たす実数$x,y,z$をすべて求めよ。
投稿日:2025.04.19

<関連動画>

マクドの価格設定大丈夫そ?

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
マクドナルドでダブルチーズバーガー1つ買うよりチーズバーガー2つ買う方が
得?数学的に説明動画
この動画を見る 

【中2数学/期末テスト対策】連立方程式の利用①

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1個100円のりんごと、1個150円のバナナを合わせて10個買うと、代金は1200円になりました。
りんごとバナナをそれぞれ何個買ったか求めなさい。
この動画を見る 

福田のおもしろ数学456〜5変数の連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

実数$x,y,z,w,t$に対して次の連立方程式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
\hspace{ 2pt } x^5=y+y^5= \cdots ① \\
\hspace{ 2pt }y^5=z+z^5=\cdots ② \\\
\hspace{ 0.1pt }z^5=w+w^5=\cdots ③ \\\
\hspace{ 0.2pt }w^5=t+t^5=\cdots ④ \\\
\hspace{ 1pt }t^5=x+x^5= \cdots ⑤
\end{array}
\right.
\end{eqnarray}$
    
この動画を見る 

【数学】中2-17 連立方程式④ 代入法編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

中2数学「分母にx,yがある連立方程式」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~分母に父とがある連立方程式~

例題
次の連立方程式を解きなさい。

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{x}+\dfrac{2}{y}=17 \\
\dfrac{5}{x}-\dfrac{3}{y}=3
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{1}{x}-1+y=-1 \\
\dfrac{2}{x}-1+\dfrac{y}{2}=4
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP