問題文全文(内容文):
赤、白、青、緑の正方形の紙がそれぞれ何枚かあり、正方形の一辺の長さは赤が1cm、白が2cm、青が4cm、緑が8cmです。いま、赤、白、青、緑の正方形の紙がそれぞれ○枚、△枚、◇枚、◎枚のとき、これらの総面積を、記号(○,△,◇,◎)で表すことにする。例えば、赤1枚、白1枚、青1枚、緑1枚のときの総面積は、次のようになる。(1,1,1,1)=1×1×1+2×2×1+4×4×1+8×8×1=85(cm²)
また、紙を取りかえる次の操作を行う。操作:赤4枚は白1枚に、白4枚は青1枚に、青4枚は緑1枚に、それぞれ必ず取りかえる。
次のア,イ,ウ,エ,オ,カを求めよ。
(1)操作後の記号が(ア,イ,ウ,エ)のとき、総面積は350cm²
(2)操作前の記号が(オ,9,5,4)のとき、操作後の記号は(3,2,カ,5)
赤、白、青、緑の正方形の紙がそれぞれ何枚かあり、正方形の一辺の長さは赤が1cm、白が2cm、青が4cm、緑が8cmです。いま、赤、白、青、緑の正方形の紙がそれぞれ○枚、△枚、◇枚、◎枚のとき、これらの総面積を、記号(○,△,◇,◎)で表すことにする。例えば、赤1枚、白1枚、青1枚、緑1枚のときの総面積は、次のようになる。(1,1,1,1)=1×1×1+2×2×1+4×4×1+8×8×1=85(cm²)
また、紙を取りかえる次の操作を行う。操作:赤4枚は白1枚に、白4枚は青1枚に、青4枚は緑1枚に、それぞれ必ず取りかえる。
次のア,イ,ウ,エ,オ,カを求めよ。
(1)操作後の記号が(ア,イ,ウ,エ)のとき、総面積は350cm²
(2)操作前の記号が(オ,9,5,4)のとき、操作後の記号は(3,2,カ,5)
チャプター:
0:00 オープニング
0:05 状況整理、(1)解説
3:49 (2)解説
7:02 エンディング
単元:
#算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
赤、白、青、緑の正方形の紙がそれぞれ何枚かあり、正方形の一辺の長さは赤が1cm、白が2cm、青が4cm、緑が8cmです。いま、赤、白、青、緑の正方形の紙がそれぞれ○枚、△枚、◇枚、◎枚のとき、これらの総面積を、記号(○,△,◇,◎)で表すことにする。例えば、赤1枚、白1枚、青1枚、緑1枚のときの総面積は、次のようになる。(1,1,1,1)=1×1×1+2×2×1+4×4×1+8×8×1=85(cm²)
また、紙を取りかえる次の操作を行う。操作:赤4枚は白1枚に、白4枚は青1枚に、青4枚は緑1枚に、それぞれ必ず取りかえる。
次のア,イ,ウ,エ,オ,カを求めよ。
(1)操作後の記号が(ア,イ,ウ,エ)のとき、総面積は350cm²
(2)操作前の記号が(オ,9,5,4)のとき、操作後の記号は(3,2,カ,5)
赤、白、青、緑の正方形の紙がそれぞれ何枚かあり、正方形の一辺の長さは赤が1cm、白が2cm、青が4cm、緑が8cmです。いま、赤、白、青、緑の正方形の紙がそれぞれ○枚、△枚、◇枚、◎枚のとき、これらの総面積を、記号(○,△,◇,◎)で表すことにする。例えば、赤1枚、白1枚、青1枚、緑1枚のときの総面積は、次のようになる。(1,1,1,1)=1×1×1+2×2×1+4×4×1+8×8×1=85(cm²)
また、紙を取りかえる次の操作を行う。操作:赤4枚は白1枚に、白4枚は青1枚に、青4枚は緑1枚に、それぞれ必ず取りかえる。
次のア,イ,ウ,エ,オ,カを求めよ。
(1)操作後の記号が(ア,イ,ウ,エ)のとき、総面積は350cm²
(2)操作前の記号が(オ,9,5,4)のとき、操作後の記号は(3,2,カ,5)
投稿日:2026.02.21





