【高校数学】 数Ⅱ-138 対数関数④・不等式編 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-138 対数関数④・不等式編

問題文全文(内容文):
◎次の不等式を解こう。

①$\log_3 x \lt \displaystyle \frac{3}{2}$

②$\log_{\frac{1}{3}}x \geqq 2$

③$\log_3(x+2) \lt 2$

④$\log_2(x+1)+\log_2(x-2) \geqq 2$

⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。

①$\log_3 x \lt \displaystyle \frac{3}{2}$

②$\log_{\frac{1}{3}}x \geqq 2$

③$\log_3(x+2) \lt 2$

④$\log_2(x+1)+\log_2(x-2) \geqq 2$

⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
投稿日:2015.09.27

<関連動画>

熊本大 対数関数の最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$


$f(x)=log_2x+log_2(6-x)^2$

出典:熊本大学 過去問
この動画を見る 

名古屋市立(医) 対数方程式 実数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'09名古屋市立大学過去問題
$(\log_2x)^3 - 6\log_{\sqrt2}x+k=0$
このxについての方程式が異なる2つの解をもつkの値と解を求めよ。
この動画を見る 

福田の数学〜対数関数の最大値2通りの解を紹介〜慶應義塾大学2023年商学部第1問(1)〜対数関数の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)2つの正の実数x,yについて、$xy^2=10$のとき、$\log_{ 10 } x$,$\log_{ 10 } y$の最大値は$\dfrac{\fbox{ア}}{{\fbox{イ}}}$である。

2023慶應義塾大学商学部過去問

この動画を見る 

大阪大 対数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数
$0 \lt a \lt 1$
$log_{2}6=m+\displaystyle \frac{1}{n+a}$

(1)
$m,n$を求めよ

(2)
$a \gt \displaystyle \frac{2}{3}$を示せ

出典:2006年大阪大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-134 対数とその性質④

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\log_23=a,\log_37=b$とするとき、$\log_{42}56$を$a,b$で表そう。

②$\log_{10}6=0.7782,\log_{10}12=1.0792$とするとき、$\log_{10}2,\log_{10}3$の値を求めよう。
この動画を見る 
PAGE TOP