大学入試問題#756「ほぼ定石通り」 藤田医科大学(2024) #級数 - 質問解決D.B.(データベース)

大学入試問題#756「ほぼ定石通り」 藤田医科大学(2024) #級数

問題文全文(内容文):
$a_1=1,\ na_{n+1}=3\displaystyle \sum_{k=1}^n a_k$
1.数列$\{a_n\}$の一般項を求めよ。
2.$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{a_{n+1}}{a_na_{n+2}}$を求めよ。

出典:2024年藤田医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ na_{n+1}=3\displaystyle \sum_{k=1}^n a_k$
1.数列$\{a_n\}$の一般項を求めよ。
2.$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{a_{n+1}}{a_na_{n+2}}$を求めよ。

出典:2024年藤田医科大学 入試問題
投稿日:2024.03.06

<関連動画>

大学入試問題#111 早稲田大学(2021) 次数下げ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{-1+\sqrt{ 5 }i}{2}$
$\beta=\displaystyle \frac{-1-\sqrt{ 5 }i}{2}$のとき
$\alpha^4+\beta^4$の値を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題047〜慶應義塾大学2019年度総合政策学部第3問〜立方体の内部を面に接しながら動く球の通過できない領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球$S(r \gt 0)$が
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは
$(\textrm{i})0 \lt r \lt \frac{\boxed{ア}}{\boxed{イ}}$のとき                    
$V=\left(\boxed{ウエオ}+\frac{\boxed{カキ}}{\boxed{クケ}}\pi\right)r^3+$
$(\boxed{コサシ}+\boxed{スセ}\pi)r^2$
$+\boxed{ソタチ}r+\boxed{ツテ}$

$(\textrm{ii})\frac{\boxed{ア}}{\boxed{イ}} \leqq r \leqq 1$のとき                    
$V=\left(\boxed{トナニ}+\frac{\boxed{ヌネ}}{\boxed{ノハ}}\pi\right)r^3+$
$(\boxed{ヒフヘ}+\boxed{ホマ}\pi)r^2$

2019慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜浜松医科大学2023医学部年第3問〜複素数平の絶対値と偏角Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
Sを実部、虚部ともに整数であるような0以外の複素数全体の集合、Tを偏角 が0以上$\displaystyle \frac{π}{2}$未満であるようなSの要素全体の集合とする。またiは虚数単位とする。以下の問いに答えよ。
(1)$α=2$, $β=1+i$, $γ=1$のとき、 $|αβγ|$ の値を求めよ。
(2)複素数zについて、 arg z = $\displaystyle \frac{π}{8}$のとき arg(iz) の値を求めよ。
(3) α, ß, γ を Tの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ を満たす α, ß, γ の
組の総数kの値を求めよ。
(4)α, ß, γをSの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ および
$\displaystyle \frac{π}{8} ≦arg(αßγ) < \displaystyle \frac{5π}{8}$
を満たす α, β, yの組の総数をmとするとき、mをkで割った商と余りを求め
よ。

2023浜松医科大学医過去問
この動画を見る 

大学入試問題#908「正確に対応するだけ」 #信州大学理学部(2024) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ
$f(x)=x+\displaystyle \int_{0}^{\pi} f(t) \cos(x+t) dt$

出典:2024年信州大学理学部
この動画を見る 

【高校数学】静岡大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分87日目~47都道府県制覇への道~【㉚静岡】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【静岡大学 2023】
関数$f(x)=x^3e^{-x^2}$について、次の問いに答えよ。ただし、$e$は自然対数の底とする。必要ならば$\displaystyle \lim_{x \to \infty}\frac{x^3}{e^{x^2}}=0$を用いてもよい。
(1) 関数$f(x)$の増減を調べ、極値を求めよ。
(2) $a>0$とする。方程式$e^{x^2}-ax^3=0$の実数解の個数を求めよ。
(3) 曲線$y=f(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ。
この動画を見る 
PAGE TOP