大学入試問題#756「ほぼ定石通り」 藤田医科大学(2024) #級数 - 質問解決D.B.(データベース)

大学入試問題#756「ほぼ定石通り」 藤田医科大学(2024) #級数

問題文全文(内容文):
$a_1=1,\ na_{n+1}=3\displaystyle \sum_{k=1}^n a_k$
1.数列$\{a_n\}$の一般項を求めよ。
2.$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{a_{n+1}}{a_na_{n+2}}$を求めよ。

出典:2024年藤田医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ na_{n+1}=3\displaystyle \sum_{k=1}^n a_k$
1.数列$\{a_n\}$の一般項を求めよ。
2.$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{a_{n+1}}{a_na_{n+2}}$を求めよ。

出典:2024年藤田医科大学 入試問題
投稿日:2024.03.06

<関連動画>

福田の数学〜早稲田大学2023年理工学部第1問〜整式の割り算の商に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを自然数として、整式$(3x+2)^n$を$x^2$+$x$+1で割った余りを$a_nx$+$b_n$とおく。
(1)$a_{n+1}$と$b_{n+1}$を、それぞれ$a_n$と$b_n$を用いて表せ。
(2)全てのnに対して、$a_n$と$b_n$は7で割り切れないことを示せ。
(3)$a_n$と$b_n$を$a_{n+1}$と$b_{n+1}$で表し、全てのnに対して、2つの整数$a_n$と$b_n$は互いに素であることを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

大学入試問題#573「沼にはまらないように!!」 京都帝国大学(1937) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(a^3+x^3)}$

出典:1937年京都帝国大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(4)〜正九角形の頂点を結んでできる正三角形の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#図形の性質#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)$P$を平面上の正九角形とする。

$P$の異なる$2$つの頂点を通る直線をすべて考える。

これら$36$本の直線のうちの$3$本により平面上で

囲まれてできる正三角形の総数は$\boxed{エ}$である。

ただし、互いに合同でも位置の異なるものは

異なる三角形として数える。

$2025$年早稲田大学商学部過去問題
この動画を見る 

愛媛大(医)合同式で楽々

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#約数・倍数・整数の割り算と余り・合同式#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$33^{20}$を90で割った余りを求めよ.

愛媛大(医)過去問
この動画を見る 

大学入試問題#461「どう処理すべきか」 関西大学(2009) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{-2x}}{1+e^{-x}} dx$

出典:2009年関西大学 入試問題
この動画を見る 
PAGE TOP