【解への道筋は…!】連立方程式:お茶の水女子大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【解への道筋は…!】連立方程式:お茶の水女子大学附属高等学校~全国入試問題解法

問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x-\dfrac{a+5}{2}y=-2 \\
2ax+15y=1
\end{array}
\right.
\end{eqnarray}$

$ y=\dfrac{1}{3}$のとき,定数$ a $の値として考えられるものをすべて求めなさい.

お茶の水女子大学附属高等学校過去問
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x-\dfrac{a+5}{2}y=-2 \\
2ax+15y=1
\end{array}
\right.
\end{eqnarray}$

$ y=\dfrac{1}{3}$のとき,定数$ a $の値として考えられるものをすべて求めなさい.

お茶の水女子大学附属高等学校過去問
投稿日:2023.12.01

<関連動画>

角度を求める A 都立西 2021

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは平行四辺形
$\angle EIF = ?$
*図は動画内参照

2021東京都立西高等学校
この動画を見る 

【高校受験対策】数学-関数32

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎東西に一直線にのびたジョギングコース上に、
P地点と、P地点から東に540m離れたQ地点と、Q地点から東に1860m離れたR地点とがある。
Aさんは、このジョギングコースを通ってP地点とR地点の間を1往復した。
Aさんは、P地点からQ地点まで一定の速さで9分間歩き、
Q地点で立ち止まってストレッチをした後、R地点に向かって分速150mで走った。
Aさんは、P地点を出発してから28分後にR地点に着き、
すぐにP地点に向かって分速150mで走ったところ、
P地点を出発してから44分後に再びP地点に着いた。
右の図は、AさんがP地点を出発してから$x$分後にP地点から$ym$離れているとするとき、
P地点を出発してから再びP地点に着くまでの$x$と$y$の関係をグラフに表したものである。
次の問に最も簡単な数で答えよ。

①AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何mか求めよ。

②AさんがQ地点からR地点に向かって走り始めたのは、
P地点を出発してから何分何秒後か求めよ。

③Bさんは、Aさんが出発した後しばらくして、R地点を出発し、
このジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。
Bさんは、P地点に向かう途中で、R地点に向かって走っているAさんとすれちがい、
AさんがP地点を出発してから39分後に、P地点に向かって走っているAさんに追いつかれた。
AさんとBさんがすれちがった地点は、P地点から何m離れているか求めよ。

図は動画内参照
この動画を見る 

【高校受験対策/数学】関数-57

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数57
Q.
図1のような、$AB=10cm$、$AD=3cm$の長方形$ABCD$がある。
点$P$は$A$から、点$Q$は$D$から同時に動き出し、
ともに毎秒$1cm$の速さで点$P$は辺$AB$上を、点$Q$は辺$DC$上を繰り返し往復する。
2点$P,Q$が動き出してから、$x$秒後の$\triangle APQ$の面積を$y cm^2$とする。
ただし点$P$が$A$にあるとき、$y=0$とする。
このとき次の各問いに答えなさい。

①2点$P,Q$が動き出してから$6$秒後の$\triangle APQ$の面積を求めなさい。

②図2は、$x$と$y$の関係を表したグラフの一部である。
2点$P,Q$が 動き出して$10$秒後から$20$秒後までの$x$と$y$の関係を式で表しなさい。

③点$R$は$A$に、点$S$は$D$にあり、それぞれ静止している。
2点$P,Q$が動き出してから$10$秒後に、2点$R,S$は動き出し、ともに毎秒$0.5cm$の速さで点$R$は辺$AB$上を、点$S$は辺$DC$上を2点$P,Q$と同様に繰り返し往復する。
このとき2点$P,Q$が動き出してから$t$秒後に$\triangle APQ$の面積と四角形$BCSR$の面積が等しくなった。
このような$t$の値のうち、小さいほうから$3$番目の値を求めなさい。

この動画を見る 

【中学数学】規則性の裏技~n番目を一瞬で求めます~

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数学(中学生)#中1数学#中2数学#中3数学#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】規則性の裏技紹介動画です
この動画を見る 

中2数学「変化の割合」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~変化の割合~ ・・変化の割合とは?

例1 y=-5X-1について、次の問いに答えなさい。

(1)変化の割合を答えなさい。
(2)Xの値が2から4まで増加するときの yの増加量を求めなさい。
この動画を見る 
PAGE TOP