問題文全文(内容文):
高校受験対策・死守85 @4:15
①$2-(3-8)$を計算しなさい。
②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。
③$(-4x)^2÷12xy×9xy^2$を計算しなさい。
④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。
⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。
⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。
⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。
ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
高校受験対策・死守85 @4:15
①$2-(3-8)$を計算しなさい。
②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。
③$(-4x)^2÷12xy×9xy^2$を計算しなさい。
④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。
⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。
⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。
⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。
ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
単元:
#数学(中学生)#中1数学#中3数学#正の数・負の数#方程式#平方根#2次方程式#空間図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守85 @4:15
①$2-(3-8)$を計算しなさい。
②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。
③$(-4x)^2÷12xy×9xy^2$を計算しなさい。
④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。
⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。
⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。
⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。
ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
高校受験対策・死守85 @4:15
①$2-(3-8)$を計算しなさい。
②$(\frac{1}{3}-\frac{3}{4})÷\frac{5}{6}$を計算しなさい。
③$(-4x)^2÷12xy×9xy^2$を計算しなさい。
④$\sqrt{18}-\frac{10}{\sqrt{ 2 }}$を計算しなさい。
⑤2次方程式$(x-4)(3x+2)=8x-5$を解きなさい。
⑥右の図のように、底面が直角三角形で、側面がすべて長方形の三角柱があり、$AB=6cm$、$BE=4cm$、$\angle ABC=30°$、$\angle ACB=90°$である。
この三角柱の体積を求めなさい。
⑦空間内にある平面$P$と、異なる2直線$l,m$の位置関係について、
つねに正しいものを、次のア~エから1つ選び記号で答えなさい。
ア 直線$l$と直線$m$が、それぞれ平面$P$と交わるならば、直線$l$と直線$m$は交わる。
イ 直線$l$と直線$m$が、それぞれ平面$P$と平行ならば、直線$l$と直線$m$は平行である。
ウ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と垂直であるならば、平面$P$と直線$l$は垂直である。
エ 平面$P$と交わる直線$l$が、平面$P$上にある直線$m$と交わらないならば、直線$l$と直線$m$はねじれの位置にある。
投稿日:2021.12.04