【中学受験算数】【回転移動】ゼロから始める中学受験算数44 分かる!楽勝!平行移動と回転移動!! - 質問解決D.B.(データベース)

【中学受験算数】【回転移動】ゼロから始める中学受験算数44 分かる!楽勝!平行移動と回転移動!!

問題文全文(内容文):
1⃣
(1)下の図は、直径12㎝の半円を真上方向に3㎝移動させたものです。
斜線部分の面積を求めましょう。

(2)下の図は、半径2㎝の円を真横方向に3㎝移動させたものです。
斜線部分の面積を求めましょう。

(3)下の図は、直径12㎝の半円を点Oを中心として30°回転させたものです。
斜線部分の面積を求めましょう。

(4)下の図は、半径4㎝の半円を点Oを中心として45°回転させたものです。
斜線部分の面積を求めましょう。

2⃣下の図は、三角形ABCを、点Cを中心として矢印の方向に回転させ、辺BCと辺CA’が一直線になるように三角形A’B’Cをつくったものです。このとき、斜線部の面積を求めましょう。

3⃣下の図は、AB=4㎝、BC=3㎝、CA=5㎝の三角形ABCを点Cを中心として90°回転させて、三角形A’B’Cに移したものです。
斜線部分の面積を求めましょう。

*図は動画内参照
チャプター:

0:00 導入
1:12 半円を真上に平行移動させた時にできる図形の面積を求める やり方解説
3:20 円を真横に平行移動させた時にできる図形の面積を求める 類題演習
5:16 半円を回転移動させてできる図形の面積を求める やり方解説
7:32 半円を回転移動させてできる図形の面積を求める 類題演習
9:17 三角形を回転移動したときにできる図形の面積を求める やり方解説
13:15 三角形を回転移動したときにできる図形の面積を求める 類題演習

単元: #算数(中学受験)#平面図形#角度と面積#図形の移動#体積・表面積・回転体・水量・変化のグラフ
指導講師: こばちゃん塾
問題文全文(内容文):
1⃣
(1)下の図は、直径12㎝の半円を真上方向に3㎝移動させたものです。
斜線部分の面積を求めましょう。

(2)下の図は、半径2㎝の円を真横方向に3㎝移動させたものです。
斜線部分の面積を求めましょう。

(3)下の図は、直径12㎝の半円を点Oを中心として30°回転させたものです。
斜線部分の面積を求めましょう。

(4)下の図は、半径4㎝の半円を点Oを中心として45°回転させたものです。
斜線部分の面積を求めましょう。

2⃣下の図は、三角形ABCを、点Cを中心として矢印の方向に回転させ、辺BCと辺CA’が一直線になるように三角形A’B’Cをつくったものです。このとき、斜線部の面積を求めましょう。

3⃣下の図は、AB=4㎝、BC=3㎝、CA=5㎝の三角形ABCを点Cを中心として90°回転させて、三角形A’B’Cに移したものです。
斜線部分の面積を求めましょう。

*図は動画内参照
投稿日:2019.10.31

<関連動画>

【受験算数】変化のグラフ:⑧しきりに穴がある

アイキャッチ画像
単元: #算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
教材: #SPX#中学受験教材#6年算数D-支援
指導講師: 受験算数の森
問題文全文(内容文):
大問1
縦10cm、横21cm、高さ25cmの直方体の容器が図のように、2枚の板で左から6cm、さらに 9cmのところで、ア、イ、ウに垂直に区切られ ています。左の板には下から8cm、右の板には下から6cmのところにそれぞれ穴があいています。また、イの底には水が入っていれば、毎秒 2㎤で水が出ていく仕掛けの穴があいていま す。いま、アのところに毎秒5㎤で水を入れはじめたとします。ただし、容器、板の厚さは考えずに、板の穴はその位置まで達した水がとどまることなく、すべて流れ出るのに十分な大きさの穴とします。次の問いに答えなさい。
(1) アのところの深さが5㎝になるのは、水を入れはじめてから何秒後ですか。
(2) 3分36秒後のイのところの深さは、何㎝ですか。
(3) ウのところの深さが1cmになるのは、何分何秒後ですか。
(4) 水を入れはじめて5分16秒後に水を入れるのをやめ、3分間止めてからふたたび水を入れはじめました。ふたたび水を入れはじめてから、さらに2分後、ア、 イ、ウの容器には、それぞれ何cmの深さまで水が入っていますか。

大問2
縦10cm、横20cm、高さ18cmの直方体の容器が図のように、2枚の板で左から6cm、さらに 8cmのところで、ア、イ、ウに垂直に区切られ ています。左の板には下から10cm、右の板には下から8cmのところにそれぞれ穴があいています。また、イの底には水が入っていれば、毎秒 2㎤で水が出ていく仕掛けの穴があいていま す。いま、アのところに毎秒6㎤で水を入れはじめたとします。ただし、容器、板の厚さは考えずに、板の穴はその位置まで達した水がとどまることなく、すべて流れ出るのに十分な大きさの穴とします。次の問いに答えなさい。
(1) アのところの深さが6㎝になるのは、水を入れはじめてから何秒後ですか。
(2) 2分40秒後のイのところの深さは、何㎝ですか。
(3) ウのところの深さが1cmになるのは、何分何秒後ですか。
(4) 水を入れはじめて4分50秒後に水を入れるのをやめ、4分間止めてからふたたび水を入れはじめました。ふたたび水を入れはじめてから、さらに3分後、ア、 イ、ウの容器には、それぞれ何cmの深さまで水が入っていますか。
この動画を見る 

正四面体の体積 中学受験の問題!?

アイキャッチ画像
単元: #算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ#立体図形その他
指導講師: 数学を数楽に
問題文全文(内容文):
正四面体の体積は?
*図は動画内参照
この動画を見る 

福田のおもしろ数学006〜中学入試の算数に挑戦、三平方の定理を使わない〜正方形の折り返し

アイキャッチ画像
単元: #算数(中学受験)#平面図形#相似と相似を利用した問題
指導講師: 福田次郎
問題文全文(内容文):
正方形の紙を折り曲げる。
a:b=?
※図は動画内参照
この動画を見る 

【受験算数】立体切断演習問題その6「切断面を伸ばして考える4」

アイキャッチ画像
単元: #算数(中学受験)#立体図形#立体切断
教材: #SPX#6年算数W-支援#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
下の図の立体は、1辺12cmの立方体です。EP=EQ=BR=6cmです。
(1) PQをQの方向へ延長した直線が、GFをFの方向へ延長した直線と交わる点をSとします。FSの長さは何cmですか。
(2) SRをRの方向へ延長した直線が、BCと交わる点をTとします。BTの長さは何cmですか。
この動画を見る 

【受験算数】場合の数:道順の場合の数通るべき点がある場合~イチイチ解法【予習シリーズ算数・小5上】

アイキャッチ画像
単元: #算数(中学受験)#場合の数#場合の数
教材: #予習シ#予習シ算数・小5上#中学受験教材#場合の数
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のような、直角に交わる道があります。点Aから点Cを通って点Bまで行くとき、遠回りせずに行く道順は何通りありますか。
この動画を見る 
PAGE TOP