【中2 P.52】連立方程式の計算特訓① - 質問解決D.B.(データベース)

【中2 P.52】連立方程式の計算特訓①

問題文全文(内容文):
次の計算をしよう.

1.$\boxed{1}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-2y=5\\
3x+5y=4
\end{array}
\right.
\end{eqnarray}$

$\boxed{2}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=12\\
x-y=8
\end{array}
\right.
\end{eqnarray}$

$\boxed{3}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=-1\\
-3x+y=5
\end{array}
\right.
\end{eqnarray}$

$\boxed{4}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=5 \\
x-2y=4
\end{array}
\right.
\end{eqnarray}$

$\boxed{5}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-9y=7 \\
5x-6y=7
\end{array}
\right.
\end{eqnarray}$

$\boxed{6}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=6\\
4x-3y=17
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしよう.

1.$\boxed{1}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-2y=5\\
3x+5y=4
\end{array}
\right.
\end{eqnarray}$

$\boxed{2}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=12\\
x-y=8
\end{array}
\right.
\end{eqnarray}$

$\boxed{3}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=-1\\
-3x+y=5
\end{array}
\right.
\end{eqnarray}$

$\boxed{4}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=5 \\
x-2y=4
\end{array}
\right.
\end{eqnarray}$

$\boxed{5}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-9y=7 \\
5x-6y=7
\end{array}
\right.
\end{eqnarray}$

$\boxed{6}$
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=6\\
4x-3y=17
\end{array}
\right.
\end{eqnarray}$
投稿日:2016.07.14

<関連動画>

証明:沖縄県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#平行と合同#相似な図形#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 沖縄県の高校

$\triangle AOE \equiv \triangle COF$となる
ことを証明しなさい。

点O:対角線$AC$、$BD$の交点 (平行四辺形$ABCD$)
点E:辺$AB$上の点
点F:直線$EO$と辺$CD$との交点
※根拠となることがらを必ず書くこと!
※図は動画内参照
この動画を見る 

正方形の折り返し

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
動画内の図を参照し、$\triangle \rm{A'BC}$の体積を求めよ
この動画を見る 

高等学校入学試験予想問題:鳥取県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#平面図形#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 10xy^2\div(-5y)\times 3x$
(2)$ 2x-y-\dfrac{5x+y}{3}$
(3)$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=2 \\
x+2y=8
\end{array}
\right.
\end{eqnarray}$
$ x=?,y=? $

(4)$ 2x^2+3x-1=0 $
$ x=? $

$ \boxed{2}$

$\dfrac{3a-5}{2}=b ・・・・①$
$ 3a-5=2b・・・・②$
$ 3a=2b+5・・・・③$
$ a=\dfrac{2b+5}{3}・・・・④$
「等式の両辺に同じ数を足しても等式が成り立つ」に導く式変形か?

$\boxed{3}$

$ AD\parallel BC,BC=2AD,AD \lt CD,\angle ADC=90°$
$ 台形ABCD,\angle CAE=90°$である.
①$ \triangle ACD \backsim \triangle ECA $の証明をせよ.
②(1)$ DE=? $
(2)$ \triangle EHD=?$
(3)$ FH:GH=?$
この動画を見る 

【別解も好手…!】連立方程式:東京都立産業技術高等専門学校~全国入試問題解法

単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京都立産業技術高等専門学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$連立方程式$
\begin{eqnarray}
\left\{
\begin{array}{l}
2(x+\dfrac{1}{2}) - (y-\dfrac{1}{2}) = 8 \\
3(x+\dfrac{1}{2}) + 2(y-\dfrac{1}{2}) = 5
\end{array}
\right.
\end{eqnarray}
$を解け。$
この動画を見る 

【テスト対策・中2】3章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図のように、2点$A(1,3)、B(4,1)$がある。
$y$軸上に点$P$をとり、$AP+PB$の長さを考える。
$AP+PB$の長さが最も短くなるとき、点$P$の座標を求めなさい。

図は動画内参照
この動画を見る 
PAGE TOP