2021 愛知高校 図形 B - 質問解決D.B.(データベース)

2021 愛知高校 図形 B

問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2021愛知高等学校
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2021愛知高等学校
投稿日:2021.02.10

<関連動画>

福田の数学〜早稲田大学2024教育学部第1問(4)〜領域と奇跡

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#図形と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
\fcolorbox{#000}{ #fff }{$1$} \ (4) \\
\end{eqnarray}
$
$xy$平面上に3点$O(0,0),A(1,0),B(1,1)$をとる。点$(x,y)$が三角形$OAB$の周および内部を動くときに点$(x+y,xy)$が動く範囲の面積を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の平行移動3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の放物線をx軸方向に1、y軸方向に-2だけ平行移動して得られる放物線の方程式を求めよ。
(1)$y=-x^2$
(2)$y=2x^2+4x$
(3)$y=3x^2+x-4$
この動画を見る 

京都大学入試問題 3次方程式が整数解を持たない時、解は無理数であることの証明 高校数学

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式$x^3+x-8=0$は
(1)ただ1つの実根を1と2との間にもつことを示せ。

(2)この根は無理数であることを証明せよ。

京大過去問
この動画を見る 

【初見では固まる…!】平方根:慶応義塾高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$次の式を計算せよ。$
$\dfrac{1}{(1+\sqrt{2}+\sqrt{3})^2}+\dfrac{1}{(1+\sqrt{2}-\sqrt{3})^2}$
この動画を見る 

因数分解しようぜ!

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^3+(x^2-3x+4)^2+2$
これを因数分解せよ.
この動画を見る 
PAGE TOP