2021 愛知高校 図形 B - 質問解決D.B.(データベース)

2021 愛知高校 図形 B

問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2021愛知高等学校
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2021愛知高等学校
投稿日:2021.02.10

<関連動画>

ごめんなさい

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
b>a>0
a^2=2+√3
a^2=2-√3
(1)abの値を求めよ。
(2)a-b
この動画を見る 

名古屋大 円の方程式 2円と直線に接する円 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08名古屋大学過去問題
2つの円、$x^2+(y-2)^2=9$と$(x-4)^2+(y+4)^2=1$に外接し、x=6と接する円を求めよ。
この動画を見る 

数学「大学入試良問集」【1−2 数と式】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y$を実数とする。
下の(1)、(2)の文中の□にあてはまるものを、次の(ア)、(イ)、(ウ)、(エ)の中から選べ。
 (ア)必要条件ではあるが、十分条件ではない
 (イ)十分条件ではあるが、必要条件ではない
 (ウ)必要十分条件である
 (エ)必要条件でも、十分条件でもない

(1)$x^2+y^2 \lt 1$は、$-1 \lt x \lt $であるための□。
(2)$-1 \lt x \lt 1$かつ$-1 \lt y \lt 1$は$x^2+y^2 \lt 1$であるための□。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]右の図のように、$\triangle ABC$の外側に辺AB,BC,CAをそれぞれ1辺とする
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ
線分で結んだ図形を考える。以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$ とする。

(1)$b=6, c=5, \cos A=\frac{3}{5}$のとき、$\sin A=\frac{\boxed{セ}}{\boxed{ソ}}$であり、
$\triangle ABC$の面積は$\boxed{タチ}$、$\triangle AID$の面積は$\boxed{ツテ}$である。

(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。
このとき、$S_1-S_2-S_3$ は
・$0° \lt A \lt 90°$のとき$\boxed{ト}$ ・$A=90°$のとき$\boxed{ナ}$
・$90° \lt A \lt 180°$のとき$\boxed{ニ}$

$\boxed{ト}~\boxed{ニ}$の解答群
⓪0である  ①正の値である  ②負の値である  ③正の値も負の値もとる

(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{ヌ}$である。

$\boxed{ヌ}$の解答群
⓪$a \lt b \lt c$ならば$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば$T_1 \lt T_2 \lt T_3$
②Aが鈍角ならば$T_1 \lt T_2$ かつ$T_1 \lt T_3$
③$a,b,c$の値に関係なく、$T_1 = T_2 = T_3$

(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さいもの
を求める。$0° \lt A \lt 90°$のとき、$ID \boxed{ネ} BC$であり、
$(\triangle AID$の外接円の半径)$\boxed{ノ}(\triangle ABCの外接円の半径)$
であるから、外接円の半径が最も小さい三角形は
$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{ハ}$である。
$0° \lt A \lt B \lt 90° \lt C$のとき、$\boxed{ヒ}$である。

$\boxed{ネ}、\boxed{ノ}$の解答群
⓪$\lt$   ①$=$   ②$\gt$

$\boxed{ハ}、\boxed{ヒ}$の解答群
⓪$\triangle ABC$   ①$\triangle AID$   ②$\triangle BEF$   ③$\triangle CGH$

2021共通テスト数学過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(2)〜対数方程式と対称式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)1ではない正の実数$x,\ y$が次の条件を満たすとする。
$\left\{\begin{array}{1}
xy=\displaystyle\frac{1}{4}\\
\displaystyle\frac{1}{\log_2x}+\displaystyle\frac{1}{\log_2y}=\frac{8}{21}
\end{array}\right.$
このとき、$x+y=\frac{\boxed{\ \ キク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コサ\ \ }}$である。

2022明治大学全統過去問
この動画を見る 
PAGE TOP