#60数検1級1次「ええ問題!落とし穴に注意」 数検1級1次 - 質問解決D.B.(データベース)

#60数検1級1次「ええ問題!落とし穴に注意」 数検1級1次

問題文全文(内容文):
全ての実数$x$について
$\displaystyle \frac{\pi}{2} \lt \tan^{-1}x \lt \displaystyle \frac{\pi}{2}$とするとき、次の値を求めよ。
$\tan^{-1}1+\tan^{-1}2+\tan^{-1}3$

出典:数検1級1次
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
全ての実数$x$について
$\displaystyle \frac{\pi}{2} \lt \tan^{-1}x \lt \displaystyle \frac{\pi}{2}$とするとき、次の値を求めよ。
$\tan^{-1}1+\tan^{-1}2+\tan^{-1}3$

出典:数検1級1次
投稿日:2024.04.06

<関連動画>

#64 #数検1級1次過去問 #高次方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$4$次方程式
$x^4-4x-1=0$について、次の問いに答えよ。
1.上の方程式の実数解を求めよ。
2.上の方程式の虚数解を求めよ

出典:数検1級1次過去問
この動画を見る 

20年5月数学検定1級1次試験(行列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
①$A \mathbb{ x }$ =$λ \mathbb{ x }$ ($\mathbb{ x }≠0$)
λをAの固有値
$\mathbb{ x }$をλに関する固有ベクトル
$A \mathbb{ x }$-$λ \mathbb{ x }$=$\emptyset$
$(A-λE) \mathbb{ x } = \emptyset$
det(A-λE) =0
$\because det(A-λE) ≠ 0$ $ \Rightarrow $ $ \mathbb{ x } = \emptyset$となり矛盾する。

②A:3×3のケーリーハミルトンの定理
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a_{ 11 } & a_{ 12 } & a_{ 13 } \\
a_{ 21 } & a_{ 22 } & a_{ 23 } \\
a_{ 31 } & a_{ 32 } & a_{ 33 }
\end{array}
\right)
\end{eqnarray}
とする
$A^3-(a_{11}+a_{22}+a_{33})A+CA-(detA)E =\emptyset$
$C=a_{11}a_{22}-a_{12}a_{21}+a_{22}a_{33} - a_{23}a_{32}+a_{11}a_{23}-a_{13}a_{21}$

4⃣
\begin{eqnarray}
A = \left(
\begin{array}{cccc}
4 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}
\right)
\end{eqnarray}
(1)Aの固有値を求めよ。
(2)$A^3-gA^2+18A-12E$を求めよ
この動画を見る 

#50数検1級1次 過去問 重積分の積分順序の変更

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2}dy\displaystyle \int_{y}^{2}x\sqrt{ x^3+1 }\ dx$を計算せよ。
この動画を見る 

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
2018 $n ≡ 2$ (mod 1000)をみたす最小の自然数nを求めよ
この動画を見る 

微分方程式③【一般解を求める】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=\frac{x}{t}$
(2)$\frac{dx}{dt}=\frac{3t^2x}{t^3+1}$
(3)$\frac{dx}{dt}=\frac{x^2+1}{2xt}$
この動画を見る 
PAGE TOP