高校受験 数学 因数分解 - 質問解決D.B.(データベース)

高校受験 数学 因数分解

問題文全文(内容文):
$abc(abc-2c)-3c^2$を因数分解

城西大学付属川越高等学校
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$abc(abc-2c)-3c^2$を因数分解

城西大学付属川越高等学校
投稿日:2021.05.15

<関連動画>

【#8】【因数分解100問】基礎から応用まで!(71)〜(80)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(76)$(2x-3y+1)(3x+2y-1)$
(77)$(3x-4y)^2$
(78)$(x-y-1)(x^2+y^2+1+xy+x-y)$
(79)$(x^2+4x+6)(x^2+8x+6)$
(80)$-3(2x-1)(x-3)(x+2)$
この動画を見る 

【高校受験対策】数学-死守7

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$4+(-9)$

②$2-3\times (-2)$

③$3ab-ab$

2.次の各問に答えなさい.

④次の$\Box$に当てはまる記号を,
$=,<,>$の中から選びなさい.

$(-6)^2\Box -6^2$

⑤$(x+2y)(x-2y)$を展開しなさい.

⑥$x^2+2x-8$を因数分解しなさい.

⑦$x=\sqrt2,y=(\sqrt3 -\sqrt2)$のとき,
$x^2+xy$の値を求めなさい.

⑧方程式$\dfrac{1}{2}x+3=2x$を解きなさい.

⑨連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x + y = 8 \\
x - 3y =15
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑩右の図で,点$A,B,C,D$は円$O$の周上の点で,
$\angle ADB=36°$,線分$AC$は円$O$の直径である.
このとき,$\angle BAC$の大きさを求めなさい.

⑪1つのさいころを2回投げるとき,
2回目に出た目の数が,1回目に出た目の数の約数となる
確率を求めなさい.

図は動画内を参照
この動画を見る 

乗法公式

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 数学を数楽に
問題文全文(内容文):
$(a+b)^2=$
この動画を見る 

どうやったら簡単に解けるか 2022 立命館高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=\frac{\sqrt 2 -2}{2}$のとき
$x^2+2x+ \frac{1}{x+1} +1 =?$

2022立命館高等学校
この動画を見る 

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP