数学「大学入試良問集」【14−14四面体の体積•平面と垂直な直線】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−14四面体の体積•平面と垂直な直線】を宇宙一わかりやすく

問題文全文(内容文):
空間内に4点$A(0,0,0),B(2,1,1),C(-2,2,-4),D(1,2,-4)$がある。
(1)
$\angle BAC=\theta$とおくとき、$\cos\theta$の値と$\triangle ABC$の面積を求めよ。

(2)
$\overrightarrow{ AB }$と$\overrightarrow{ AC }$の両方に垂直なベクトルを1つ求めよ。

(3)
点$D$から、3点$A,B,C$を含む平面に垂直な直線を引き、その交点を$E$とするとき、線分$DE$の長さを求めよ。

(4)
四面体$ABCD$の体積を求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
空間内に4点$A(0,0,0),B(2,1,1),C(-2,2,-4),D(1,2,-4)$がある。
(1)
$\angle BAC=\theta$とおくとき、$\cos\theta$の値と$\triangle ABC$の面積を求めよ。

(2)
$\overrightarrow{ AB }$と$\overrightarrow{ AC }$の両方に垂直なベクトルを1つ求めよ。

(3)
点$D$から、3点$A,B,C$を含む平面に垂直な直線を引き、その交点を$E$とするとき、線分$DE$の長さを求めよ。

(4)
四面体$ABCD$の体積を求めよ。
投稿日:2021.10.31

<関連動画>

【数B】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
この動画を見る 

【数C】ベクトル:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形OABCは、OB+3BC=2ABを満たしている。また、辺OAを2:1に内分する点を Dとし、a=OA、c=OCとする。
(1)OBをa,cを用いて表せ。
(2)2直線OB,CDの交点をP とする。OPwpa,cを用いて表せ。また、CP:PDを求めよ。
(3)OA=3、OB=√15,OC=4 とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、ON:NCを求めよ。また、3直線OB,OC,lで囲まれてできる三角形の面積を求 めよ。
この動画を見る 

【数B】空間ベクトル:東京理科大 座標空間の図形問題

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCは,OA=4,OB=5,OC=3,∠AOB=90°,∠AOC=∠BOC=60°を満たしている。
(1)点Cから△OABに下した垂線と△OABとの交点をHとする。ベクトルCHをOA,OB,OCを用いて表そう。
(2)四面体OABCの体積を求めよう。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第2問〜空間ベクトルと正八面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 図のような一辺の長さが1の正八面体ABCDEFがある。
2点P,Qはそれぞれ辺AD, BC上にあり
$\overrightarrow{PQ}$$\bot$$\overrightarrow{AD}$かつ$\overrightarrow{PQ}$$\bot$$\overrightarrow{BC}$
を満たすとする。
(1)$\overrightarrow{AD}$と$\overrightarrow{BC}$のなす角は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\pi$である。
(2)|$\overrightarrow{AP}$|=$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$, |$\overrightarrow{BQ}$|=$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$である。
(3)|$\overrightarrow{PQ}$|=$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\sqrt{\boxed{\ \ ナ\ \ }}$である。
(4)平面EPQと直線BFの交点をRとすると|$\overrightarrow{BR}$|=$\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$である。
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(6)〜2つのベクトルの両方に垂直なベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(6)空間のベクトル$\vec{ p}=(x,y,z)$は

$\vec{b}=(0,3,2)$の両方に垂直であり、

$\vec{\vert p \vert}=7$かつ$z \gt 0$を

満たしている。

このとき、$\vec{p}=(\boxed{ク},\boxed{ケ},\boxed{コ})$である。

$2025$年立教大学経済学部過去問題
この動画を見る 
PAGE TOP