【高校受験対策】数学-図形20 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形20

問題文全文(内容文):
右の図のように、$BC = 2cm 、 AC = 3cm 、\angle ACB = 60°$の
三角形$ABC$と、$DC =\sqrt3 cm 、\angle BDC = 90°$の直角三角形$BDC$がある。
点$P$が辺$BC$上を動くとき、次の各問いに答えなさい。

①$AP+PD$が最も長くなるとき、$AP+PD$の長さを求めなさい。

②$AP+PD$が最も短くなるとき、$AP+PD$の長さを求めなさい。

③点$P$が辺$BC$の中点であるとき、$AP+PD$の長さを求めなさい。

④$AP+PD=4cm$となるとき、$AP$の長さを求めなさい。


図は動画内参照
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、$BC = 2cm 、 AC = 3cm 、\angle ACB = 60°$の
三角形$ABC$と、$DC =\sqrt3 cm 、\angle BDC = 90°$の直角三角形$BDC$がある。
点$P$が辺$BC$上を動くとき、次の各問いに答えなさい。

①$AP+PD$が最も長くなるとき、$AP+PD$の長さを求めなさい。

②$AP+PD$が最も短くなるとき、$AP+PD$の長さを求めなさい。

③点$P$が辺$BC$の中点であるとき、$AP+PD$の長さを求めなさい。

④$AP+PD=4cm$となるとき、$AP$の長さを求めなさい。


図は動画内参照
投稿日:2018.01.27

<関連動画>

【中1 数学】  1-②⑧ 比と比例式  【9~10月】

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【中1 数学】  1-②⑨ 方程式の利用① (お金編)
[解説]
① 5:4 のように表すものを比といい、それぞれを項という。
② これの比の値は $\frac{5}{4}$ 。
③ 5:4 = 12:x のような式を 比例式という。
次の問に答えよ
④ 10:x = 6:9 ⑤ 6:5 = 8:x ⑥ 7:( x+1 ) = 4:x
この動画を見る 

最短距離 正四面体  函館ラ・サール2022入試問題解説32問目

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#立体図形その他#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正四面体
DP+PQ+QR+RAの最小の長さは?
*図は動画内参照

2022函館ラ・サール高等学校
この動画を見る 

斜めの正方形はやること決まっている 土浦日大

アイキャッチ画像
単元: #数学(中学生)#中1数学#図形と計量#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
Eの座標は?
*図は動画内参照

土浦日本大学高等学校
この動画を見る 

【高校受験対策/数学】死守63

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63


下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照


右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。


1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。



ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。


下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る 

【高校受験対策】数学-死守34

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34

①$(-8)+(-4)$

②$-\frac{5}{7}+\frac{2}{3}$

③$65a^2b \div5a$

④$\frac{18}{\sqrt{2}}-\sqrt{98}$

⑤$(x+9)^2-(x-3)(x-7)$

⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。

⑦2次方程式$6x^2-2x-1=0$を解きなさい。

⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。

④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。

⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。


Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。



右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る 
PAGE TOP