【大切な応用…!】二次関数:広島大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【大切な応用…!】二次関数:広島大学附属高等学校~全国入試問題解法

問題文全文(内容文):
関数$ y=\dfrac{1}{4}x^2 $上に点$ A $は$ x=-2 $である,点$ B $は$ x=6 $である.
直線$ \ell $は2点$ A,B$を通る直線である.
点$ C $は関数$ y=\dfrac{1}{4}x^2 $上の点で
$ \triangle ABC=\triangle ABO $となるもの.
$ x $座標が最も大きくなるときの点$ C $の座標を求めなさい.

広大付属高校過去問
単元: #数学(中学生)#中2数学#1次関数#平行と合同#高校入試過去問(数学)#広島大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
関数$ y=\dfrac{1}{4}x^2 $上に点$ A $は$ x=-2 $である,点$ B $は$ x=6 $である.
直線$ \ell $は2点$ A,B$を通る直線である.
点$ C $は関数$ y=\dfrac{1}{4}x^2 $上の点で
$ \triangle ABC=\triangle ABO $となるもの.
$ x $座標が最も大きくなるときの点$ C $の座標を求めなさい.

広大付属高校過去問
投稿日:2024.01.15

<関連動画>

【1分で方向性を理解!】確率:大東文化大学第一高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
展開図のさいころを組み立て,2つ同時に振る.
(1)2つのさいころの出る目の和は全部で何通りあるか.
(2)2つのさいころの出る目の和が奇数となる確率を求めよ.

大東文化大第一高校過去問
この動画を見る 

中2数学「比例式・A=B=Cの連立方程式」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~比例式・A=B=Cの連立方程式~

例題
次の連立方程式を解きなさい。

(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+y=32 \\
x:y=3:4
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+5y=9 \\
(x+5):(y-1)=3:2
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【考え方が大切…!】確率:同志社高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#同志社高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
1から12までの整数から$ \color{red}{異なる3つ}$を選ぶ.
その$ \color{orange}{3つの数の積}$を$ \color{orange}{P}$とおく.
$ \color{orange}{P}$が$ \color{purple}{66の倍数}$であるとき,
3つの整数の選び方は,何通りあるか.

同志社高校過去問
この動画を見る 

【ゴリ押し用】cos72°の値と求め方を覚えよ!【語呂合わせ・導出】

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
cos72°の値と求め方解説動画です
-----------------
$\cos 72^{ \circ }=$
$\sin 72^{ \circ }=$
$\cos 18^{ \circ }=$
$\sin 72^{ \circ }=$
この動画を見る 

【数学】中2-16 連立方程式③ 加減法の応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP