【共通テスト】数学IA 第2問を瞬時に解くテクニックを解説します(2021.本試験) - 質問解決D.B.(データベース)

【共通テスト】数学IA 第2問を瞬時に解くテクニックを解説します(2021.本試験)

問題文全文(内容文):
(1)
ストライドを$x$、ピッチを$z$とおく。
ピッチは1秒あたりの少数、ストライドは1歩あたりの進む距離なので、1秒あたりの進む距離すなわち平均速度は、$x$と$z$を用いて[ア](m/秒)と表される。
これより、タイムと、ストライド、ピッチとの関係は
タイム=$\displaystyle \frac{100}{[ア]}$

と表されるので、[ア]が最大になるときにタイムが最もよくなる。
ただし、タイムがよくなるとは、タイムの値が小さくなることである。

[ア]を以下から選べ。
⓪$x+z$
①$z-x$
②$xz$

③$\displaystyle \frac{x+z}{[2]}$

④$\displaystyle \frac{z-x}{[2]}$

⑤$\displaystyle \frac{xz}{[2]}$


(2)
男子短距離100m走の選手である太郎さんは、①に着目して、タイムが最もよくなるストライドとピッチを考えることにした。
次の表は、太郎さんが練習で100mを3回走ったときのストライドとピッチのデータである。
-----------------
      1回目 2回目 3回目
ストライド  2.05 2.10 2.15
ピッチ 4,70 4.60 4.50
-----------------
また、ストライドとピッチにはそれぞれ限界がある。
太郎さんの場合、ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという関係があると考えて、ピッチがストライドの1次関数としてなされると仮定した。
このとき、ピッチ$z$はストライド$x$を用いて
$z=[イウ]x+\displaystyle \frac{[エオ]}{5}$ と表される。

②が太郎さんのストライドの最大値2.40とピッチの最大値4.80まで成り立つと仮定すると、$x$の値の範囲は次のようになる。
$[カ].[キク]\leqq x \leqq 2.40$

$y=[ア]$とおく。
②を$y=[ア]$に代入することにより、$y$と$x$の関数として表すことができる。
太郎さんのタイムが最もよくなるストライドとピッチを求めるためには、$[カ].[キク]\leqq x \leqq 2.40$の範囲で$y$の値を最大にする$x$の値を見つければよい。
このとき、$y$の値が最大になるのは$x=[ケ].[コサ]$のときである。
よって、太郎さんのタイムが最もよくなるのは、ストライドが[ケ].[コサ]のときであり、このとき、ピッチは[シ].[スセ]である。
このときの太郎さんのタイムは①により[ソ]である。

[ソ]については、最も適当なものを、次の⓪~⑤のうちから、一つ選べ。
⓪9.68
①9.97
②10.09
③10.33
④10.42
⑤10.55
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
ストライドを$x$、ピッチを$z$とおく。
ピッチは1秒あたりの少数、ストライドは1歩あたりの進む距離なので、1秒あたりの進む距離すなわち平均速度は、$x$と$z$を用いて[ア](m/秒)と表される。
これより、タイムと、ストライド、ピッチとの関係は
タイム=$\displaystyle \frac{100}{[ア]}$

と表されるので、[ア]が最大になるときにタイムが最もよくなる。
ただし、タイムがよくなるとは、タイムの値が小さくなることである。

[ア]を以下から選べ。
⓪$x+z$
①$z-x$
②$xz$

③$\displaystyle \frac{x+z}{[2]}$

④$\displaystyle \frac{z-x}{[2]}$

⑤$\displaystyle \frac{xz}{[2]}$


(2)
男子短距離100m走の選手である太郎さんは、①に着目して、タイムが最もよくなるストライドとピッチを考えることにした。
次の表は、太郎さんが練習で100mを3回走ったときのストライドとピッチのデータである。
-----------------
      1回目 2回目 3回目
ストライド  2.05 2.10 2.15
ピッチ 4,70 4.60 4.50
-----------------
また、ストライドとピッチにはそれぞれ限界がある。
太郎さんの場合、ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという関係があると考えて、ピッチがストライドの1次関数としてなされると仮定した。
このとき、ピッチ$z$はストライド$x$を用いて
$z=[イウ]x+\displaystyle \frac{[エオ]}{5}$ と表される。

②が太郎さんのストライドの最大値2.40とピッチの最大値4.80まで成り立つと仮定すると、$x$の値の範囲は次のようになる。
$[カ].[キク]\leqq x \leqq 2.40$

$y=[ア]$とおく。
②を$y=[ア]$に代入することにより、$y$と$x$の関数として表すことができる。
太郎さんのタイムが最もよくなるストライドとピッチを求めるためには、$[カ].[キク]\leqq x \leqq 2.40$の範囲で$y$の値を最大にする$x$の値を見つければよい。
このとき、$y$の値が最大になるのは$x=[ケ].[コサ]$のときである。
よって、太郎さんのタイムが最もよくなるのは、ストライドが[ケ].[コサ]のときであり、このとき、ピッチは[シ].[スセ]である。
このときの太郎さんのタイムは①により[ソ]である。

[ソ]については、最も適当なものを、次の⓪~⑤のうちから、一つ選べ。
⓪9.68
①9.97
②10.09
③10.33
④10.42
⑤10.55
投稿日:2021.12.27

<関連動画>

分母の有理化

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{18}{\sqrt 6}$
この動画を見る 

「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
この動画を見る 

この問題解ける?

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図で,$A,B,C,D$は円$O$の周上の点で$AO\parallel BC$である.$\angle AOB=49°$のとき,
$\angle ADC$の大きさを求めよ.
この動画を見る 

16大阪府教員採用試験(数学:連立不等式)

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a \in \mathbb{ R }$,
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - (a+2)x+2a 0
\end{array}
\right.
\end{eqnarray}
$
を同時に満たす整数がただ1つ存在するようにaの値の範囲を求めよ。
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 
PAGE TOP